These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 17957448)
21. Biomimetic hydroxyapatite-containing composite nanofibrous substrates for bone tissue engineering. Venugopal J; Prabhakaran MP; Zhang Y; Low S; Choon AT; Ramakrishna S Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1917):2065-81. PubMed ID: 20308115 [TBL] [Abstract][Full Text] [Related]
22. Coated electrospun polyamide-6/chitosan scaffold with hydroxyapatite for bone tissue engineering. Niu X; Qin M; Xu M; Zhao L; Wei Y; Hu Y; Lian X; Chen S; Chen W; Huang D Biomed Mater; 2021 Feb; 16(2):025014. PubMed ID: 33361571 [TBL] [Abstract][Full Text] [Related]
23. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells. Gandhimathi C; Venugopal JR; Tham AY; Ramakrishna S; Kumar SD Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():776-785. PubMed ID: 25687008 [TBL] [Abstract][Full Text] [Related]
24. Biocomposite scaffolds for bone regeneration: Role of chitosan and hydroxyapatite within poly-3-hydroxybutyrate-co-3-hydroxyvalerate on mechanical properties and in vitro evaluation. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Mech Behav Biomed Mater; 2015 Nov; 51():88-98. PubMed ID: 26232670 [TBL] [Abstract][Full Text] [Related]
25. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926 [TBL] [Abstract][Full Text] [Related]
26. Effect of chitosan as a dispersant on collagen-hydroxyapatite composite matrices. Zhang L; Tang P; Zhang W; Xu M; Wang Y Tissue Eng Part C Methods; 2010 Feb; 16(1):71-9. PubMed ID: 19364274 [TBL] [Abstract][Full Text] [Related]
27. Nanofibrous poly(vinyl alcohol)/chitosan contained carbonated hydroxyapatite nanoparticles scaffold for bone tissue engineering. Januariyasa IK; Ana ID; Yusuf Y Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110347. PubMed ID: 31761152 [TBL] [Abstract][Full Text] [Related]
28. Nanofibrous polysaccharide hydroxyapatite composites with biocompatibility against human osteoblasts. Gašparič P; Kurečič M; Kargl R; Maver U; Gradišnik L; Hribernik S; Kleinschek KS; Smole MS Carbohydr Polym; 2017 Dec; 177():388-396. PubMed ID: 28962783 [TBL] [Abstract][Full Text] [Related]
29. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684 [TBL] [Abstract][Full Text] [Related]
30. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Frohbergh ME; Katsman A; Botta GP; Lazarovici P; Schauer CL; Wegst UG; Lelkes PI Biomaterials; 2012 Dec; 33(36):9167-78. PubMed ID: 23022346 [TBL] [Abstract][Full Text] [Related]
31. Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration. Francis L; Venugopal J; Prabhakaran MP; Thavasi V; Marsano E; Ramakrishna S Acta Biomater; 2010 Oct; 6(10):4100-9. PubMed ID: 20466085 [TBL] [Abstract][Full Text] [Related]
32. Synergistic interaction of platelet derived growth factor (PDGF) with the surface of PLLA/Col/HA and PLLA/HA scaffolds produces rapid osteogenic differentiation. Raghavendran HR; Mohan S; Genasan K; Murali MR; Naveen SV; Talebian S; McKean R; Kamarul T Colloids Surf B Biointerfaces; 2016 Mar; 139():68-78. PubMed ID: 26700235 [TBL] [Abstract][Full Text] [Related]
33. In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Zhou J; Xu C; Wu G; Cao X; Zhang L; Zhai Z; Zheng Z; Chen X; Wang Y Acta Biomater; 2011 Nov; 7(11):3999-4006. PubMed ID: 21757035 [TBL] [Abstract][Full Text] [Related]
34. Amorphous polyphosphate-hydroxyapatite: A morphogenetically active substrate for bone-related SaOS-2 cells in vitro. Müller WEG; Tolba E; Schröder HC; Muñoz-Espí R; Diehl-Seifert B; Wang X Acta Biomater; 2016 Feb; 31():358-367. PubMed ID: 26654764 [TBL] [Abstract][Full Text] [Related]
36. Tissue scaffolds mimicking hierarchical bone morphology as biomaterials for oral maxillofacial surgery with augmentation: structure, properties, and performance evaluation for Thonglam J; Nuntanaranont T; Kong X; Meesane J Biomed Mater; 2024 Aug; 19(5):. PubMed ID: 39094618 [TBL] [Abstract][Full Text] [Related]
37. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration. Nandakumar A; Fernandes H; de Boer J; Moroni L; Habibovic P; van Blitterswijk CA Macromol Biosci; 2010 Nov; 10(11):1365-73. PubMed ID: 20799255 [TBL] [Abstract][Full Text] [Related]
38. Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. He X; Fan X; Feng W; Chen Y; Guo T; Wang F; Liu J; Tang K Int J Biol Macromol; 2018 Aug; 115():385-392. PubMed ID: 29673955 [TBL] [Abstract][Full Text] [Related]
39. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study. Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110 [TBL] [Abstract][Full Text] [Related]
40. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]