These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 17957448)
41. Magnetic bioinspired micro/nanostructured composite scaffold for bone regeneration. Zhao Y; Fan T; Chen J; Su J; Zhi X; Pan P; Zou L; Zhang Q Colloids Surf B Biointerfaces; 2019 Feb; 174():70-79. PubMed ID: 30439640 [TBL] [Abstract][Full Text] [Related]
42. Porous collagen-hydroxyapatite scaffolds with mesenchymal stem cells for bone regeneration. Ning L; Malmström H; Ren YF J Oral Implantol; 2015 Feb; 41(1):45-9. PubMed ID: 23574526 [TBL] [Abstract][Full Text] [Related]
43. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts. Zhang X; Chang W; Lee P; Wang Y; Yang M; Li J; Kumbar SG; Yu X PLoS One; 2014; 9(1):e85871. PubMed ID: 24475056 [TBL] [Abstract][Full Text] [Related]
44. Biomimetic synthesis of Mg-substituted hydroxyapatite nanocomposites and three-dimensional printing of composite scaffolds for bone regeneration. Chen S; Shi Y; Zhang X; Ma J J Biomed Mater Res A; 2019 Nov; 107(11):2512-2521. PubMed ID: 31319006 [TBL] [Abstract][Full Text] [Related]
45. The effects of hydroxyapatite nanoparticles embedded in a MMP-sensitive photoclickable PEG hydrogel on encapsulated MC3T3-E1 pre-osteoblasts. Carles-Carner M; Saleh LS; Bryant SJ Biomed Mater; 2018 May; 13(4):045009. PubMed ID: 29611815 [TBL] [Abstract][Full Text] [Related]
46. Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering. Salifu AA; Lekakou C; Labeed FH J Biomed Mater Res A; 2017 Jul; 105(7):1911-1926. PubMed ID: 28263431 [TBL] [Abstract][Full Text] [Related]
47. Aligned bioactive multi-component nanofibrous nanocomposite scaffolds for bone tissue engineering. Jose MV; Thomas V; Xu Y; Bellis S; Nyairo E; Dean D Macromol Biosci; 2010 Apr; 10(4):433-44. PubMed ID: 20112236 [TBL] [Abstract][Full Text] [Related]
48. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection. Selvakumar M; Pawar HS; Francis NK; Das B; Dhara S; Chattopadhyay S ACS Appl Mater Interfaces; 2016 Mar; 8(9):5941-60. PubMed ID: 26889707 [TBL] [Abstract][Full Text] [Related]
49. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study. Çakmak S; Çakmak AS; Gümüşderelioğlu M Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136 [TBL] [Abstract][Full Text] [Related]
50. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix. Cholas R; Kunjalukkal Padmanabhan S; Gervaso F; Udayan G; Monaco G; Sannino A; Licciulli A Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():499-505. PubMed ID: 27040244 [TBL] [Abstract][Full Text] [Related]
51. Fabrication of mineralized polymeric nanofibrous composites for bone graft materials. Ngiam M; Liao S; Patil AJ; Cheng Z; Yang F; Gubler MJ; Ramakrishna S; Chan CK Tissue Eng Part A; 2009 Mar; 15(3):535-46. PubMed ID: 18759670 [TBL] [Abstract][Full Text] [Related]
52. A biocomposite of collagen nanofibers and nanohydroxyapatite for bone regeneration. Ribeiro N; Sousa SR; van Blitterswijk CA; Moroni L; Monteiro FJ Biofabrication; 2014 Sep; 6(3):035015. PubMed ID: 24925266 [TBL] [Abstract][Full Text] [Related]
53. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379 [TBL] [Abstract][Full Text] [Related]
54. Enhanced infiltration and biomineralization of stem cells on collagen-grafted three-dimensional nanofibers. Shabani I; Haddadi-Asl V; Soleimani M; Seyedjafari E; Babaeijandaghi F; Ahmadbeigi N Tissue Eng Part A; 2011 May; 17(9-10):1209-18. PubMed ID: 21143044 [TBL] [Abstract][Full Text] [Related]
55. Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering. Kim JY; Lee TJ; Cho DW; Kim BS J Biomater Sci Polym Ed; 2010; 21(6-7):951-62. PubMed ID: 20482995 [TBL] [Abstract][Full Text] [Related]
56. Effects of hydroxyapatite-containing composite nanofibers on osteogenesis of mesenchymal stem cells in vitro and bone regeneration in vivo. Lü LX; Zhang XF; Wang YY; Ortiz L; Mao X; Jiang ZL; Xiao ZD; Huang NP ACS Appl Mater Interfaces; 2013 Jan; 5(2):319-30. PubMed ID: 23267692 [TBL] [Abstract][Full Text] [Related]
57. Bioactive glass (45S5)-based 3D scaffolds coated with magnesium and zinc-loaded hydroxyapatite nanoparticles for tissue engineering applications. Dittler ML; Unalan I; Grünewald A; Beltrán AM; Grillo CA; Destch R; Gonzalez MC; Boccaccini AR Colloids Surf B Biointerfaces; 2019 Oct; 182():110346. PubMed ID: 31325780 [TBL] [Abstract][Full Text] [Related]
58. Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering. Shanmugavel S; Reddy VJ; Ramakrishna S; Lakshmi BS; Dev VG J Biomater Appl; 2014 Jul; 29(1):46-58. PubMed ID: 24287981 [TBL] [Abstract][Full Text] [Related]
59. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
60. 3D-Cultivation of bone marrow stromal cells on hydroxyapatite scaffolds fabricated by dispense-plotting and negative mould technique. Detsch R; Uhl F; Deisinger U; Ziegler G J Mater Sci Mater Med; 2008 Apr; 19(4):1491-6. PubMed ID: 17990079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]