BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 17957711)

  • 1. Bone modeling response to voluntary exercise in the hindlimb of mice.
    Plochocki JH; Rivera JP; Zhang C; Ebba SA
    J Morphol; 2008 Mar; 269(3):313-8. PubMed ID: 17957711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional adaptation of the femoral head to voluntary exercise.
    Plochocki JH; Riscigno CJ; Garcia M
    Anat Rec A Discov Mol Cell Evol Biol; 2006 Jul; 288(7):776-81. PubMed ID: 16761292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive modeling in a mammalian skeletal model system.
    Gordon KR; Levy C; Perl M; Weeks OI
    Growth Dev Aging; 1993; 57(2):101-10. PubMed ID: 8495992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptations in the mandible and appendicular skeleton of high and low bone density inbred mice.
    Meta IF; Fernandez SA; Gulati P; Huja SS
    Calcif Tissue Int; 2007 Aug; 81(2):107-13. PubMed ID: 17557123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone intrinsic material properties in three inbred mouse strains.
    Akhter MP; Fan Z; Rho JY
    Calcif Tissue Int; 2004 Nov; 75(5):416-20. PubMed ID: 15592798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growing C57Bl/6 mice increase whole bone mechanical properties by increasing geometric and material properties.
    Brodt MD; Ellis CB; Silva MJ
    J Bone Miner Res; 1999 Dec; 14(12):2159-66. PubMed ID: 10620076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site specific bone adaptation response to mechanical loading.
    Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP
    J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physical exercise improves properties of bone and its collagen network in growing and maturing mice.
    Isaksson H; Tolvanen V; Finnilä MA; Iivarinen J; Tuukkanen J; Seppänen K; Arokoski JP; Brama PA; Jurvelin JS; Helminen HJ
    Calcif Tissue Int; 2009 Sep; 85(3):247-56. PubMed ID: 19641838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of the hindlimb bones of bullfrogs and cane toads in bending and torsion.
    Wilson MP; Espinoza NR; Shah SR; Blob RW
    Anat Rec (Hoboken); 2009 Jul; 292(7):935-44. PubMed ID: 19548305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local expression of human growth hormone in bone results in impaired mechanical integrity in the skeletal tissue of transgenic mice.
    Tseng KF; Bonadio JF; Stewart TA; Baker AR; Goldstein SA
    J Orthop Res; 1996 Jul; 14(4):598-604. PubMed ID: 8764869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo strains in the femur of the Virginia opossum (Didelphis virginiana) during terrestrial locomotion: testing hypotheses of evolutionary shifts in mammalian bone loading and design.
    Butcher MT; White BJ; Hudzik NB; Gosnell WC; Parrish JH; Blob RW
    J Exp Biol; 2011 Aug; 214(Pt 15):2631-40. PubMed ID: 21753057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice.
    Kelly SA; Czech PP; Wight JT; Blank KM; Garland T
    J Morphol; 2006 Mar; 267(3):360-74. PubMed ID: 16380968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hindlimb suspension diminishes femoral cross-sectional growth in the rat.
    van der Meulen MC; Morey-Holton ER; Carter DR
    J Orthop Res; 1995 Sep; 13(5):700-7. PubMed ID: 7472748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and remodeling responses to normal loading in the human lower limb.
    Drapeau MS; Streeter MA
    Am J Phys Anthropol; 2006 Mar; 129(3):403-9. PubMed ID: 16331659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptation of mechanical, morphological, and biochemical properties of the rat growth plate to dose-dependent voluntary exercise.
    Niehoff A; Kersting UG; Zaucke F; Morlock MM; Brüggemann GP
    Bone; 2004 Oct; 35(4):899-908. PubMed ID: 15454097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical evaluation of large-size fourth-generation composite femur and tibia models.
    Gardner MP; Chong AC; Pollock AG; Wooley PH
    Ann Biomed Eng; 2010 Mar; 38(3):613-20. PubMed ID: 20049637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased non-linear locomotion alters diaphyseal bone shape.
    Carlson KJ; Judex S
    J Exp Biol; 2007 Sep; 210(Pt 17):3117-25. PubMed ID: 17704086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CART deficiency increases body weight but does not alter bone strength.
    Bartell SM; Isales CM; Baile CA; Kuhar MJ; Hamrick MW
    J Musculoskelet Neuronal Interact; 2008; 8(2):146-53. PubMed ID: 18622083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of impact exercise and its intensity on bone geometry at weight-bearing tibia and femur.
    Vainionpää A; Korpelainen R; Sievänen H; Vihriälä E; Leppäluoto J; Jämsä T
    Bone; 2007 Mar; 40(3):604-11. PubMed ID: 17140871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.