BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 17957711)

  • 21. Testing the hindlimb-strength hypothesis: non-aerial locomotion by Chiroptera is not constrained by the dimensions of the femur or tibia.
    Riskin DK; Bertram JE; Hermanson JW
    J Exp Biol; 2005 Apr; 208(Pt 7):1309-19. PubMed ID: 15781891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variation in estradiol level affects cortical bone growth in response to mechanical loading in sheep.
    Devlin MJ; Lieberman DE
    J Exp Biol; 2007 Feb; 210(Pt 4):602-13. PubMed ID: 17267646
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Femoral loading mechanics in the Virginia opossum, Didelphis virginiana: torsion and mediolateral bending in mammalian locomotion.
    Gosnell WC; Butcher MT; Maie T; Blob RW
    J Exp Biol; 2011 Oct; 214(Pt 20):3455-66. PubMed ID: 21957109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific.
    Wallace JM; Rajachar RM; Allen MR; Bloomfield SA; Robey PG; Young MF; Kohn DH
    Bone; 2007 Apr; 40(4):1120-7. PubMed ID: 17240210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice.
    Kodama Y; Umemura Y; Nagasawa S; Beamer WG; Donahue LR; Rosen CR; Baylink DJ; Farley JR
    Calcif Tissue Int; 2000 Apr; 66(4):298-306. PubMed ID: 10742449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique?
    Polk JD; Demes B; Jungers WL; Biknevicius AR; Heinrich RE; Runestad JA
    J Hum Evol; 2000 Sep; 39(3):297-325. PubMed ID: 10964531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exercise prevention of unloading-induced bone and muscle loss in adult mice.
    Roland M; Hanson AM; Cannon CM; Stodieck LS; Ferguson VL
    Biomed Sci Instrum; 2005; 41():128-34. PubMed ID: 15850093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanics of limb bone loading during terrestrial locomotion in river cooter turtles (Pseudemys concinna).
    Butcher MT; Blob RW
    J Exp Biol; 2008 Apr; 211(Pt 8):1187-202. PubMed ID: 18375843
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation of flexural structural properties with bone physical properties: a four species survey.
    Ayers RA; Miller MR; Simske SJ; Norrdin RW
    Biomed Sci Instrum; 1996; 32():251-60. PubMed ID: 8672676
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia.
    Fritton JC; Myers ER; Wright TM; van der Meulen MC
    Bone; 2005 Jun; 36(6):1030-8. PubMed ID: 15878316
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone.
    Huang TH; Lin SC; Chang FL; Hsieh SS; Liu SH; Yang RS
    J Appl Physiol (1985); 2003 Jul; 95(1):300-7. PubMed ID: 12611764
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in geometrical and biomechanical properties of immature male and female rat tibia.
    Zernicke RF; Hou JC; Vailas AC; Nishimoto M; Patel S; Shaw SR
    Aviat Space Environ Med; 1990 Sep; 61(9):814-20. PubMed ID: 2241747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol.
    Leppänen O; Sievänen H; Jokihaara J; Pajamäki I; Järvinen TL
    J Bone Miner Res; 2006 Aug; 21(8):1231-7. PubMed ID: 16869721
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exercise when young provides lifelong benefits to bone structure and strength.
    Warden SJ; Fuchs RK; Castillo AB; Nelson IR; Turner CH
    J Bone Miner Res; 2007 Feb; 22(2):251-9. PubMed ID: 17129172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Articular area responses to mechanical loading: effects of exercise, age, and skeletal location.
    Lieberman DE; Devlin MJ; Pearson OM
    Am J Phys Anthropol; 2001 Dec; 116(4):266-77. PubMed ID: 11745078
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bilateral symmetry of biomechanical properties in mouse femora.
    Margolis DS; Lien YH; Lai LW; Szivek JA
    Med Eng Phys; 2004 May; 26(4):349-53. PubMed ID: 15121061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maintenance of bone mass and mechanical properties after short-term cessation of high impact exercise in rats.
    Singh R; Umemura Y; Honda A; Nagasawa S
    Int J Sports Med; 2002 Feb; 23(2):77-81. PubMed ID: 11842352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Dynamic investigation of tibial biomechanical property endured persistent intensive stress].
    Li C; Li G; Pei F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Apr; 24(2):324-8. PubMed ID: 17591252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic variations in bone density, histomorphometry, and strength in mice.
    Akhter MP; Iwaniec UT; Covey MA; Cullen DM; Kimmel DB; Recker RR
    Calcif Tissue Int; 2000 Oct; 67(4):337-44. PubMed ID: 11000349
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural and Biomechanical Adaptations to Free-Fall Landing in Hindlimb Cortical Bone of Growing Female Rats.
    Lin HS; Wang HS; Chiu HT; Cheng KB; Hsu AT; Huang TH
    J Sports Sci Med; 2018 Jun; 17(2):188-196. PubMed ID: 29769819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.