These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 179583)

  • 21. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars.
    Nair NU; Zhao H
    Metab Eng; 2010 Sep; 12(5):462-8. PubMed ID: 20447465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intelligent self-control of carbon metabolic flux in SecY-engineered Escherichia coli for xylitol biosynthesis from xylose-glucose mixtures.
    Guo Q; Ullah I; Zheng LJ; Gao XQ; Liu CY; Zheng HD; Fan LH; Deng L
    Biotechnol Bioeng; 2022 Feb; 119(2):388-398. PubMed ID: 34837379
    [TBL] [Abstract][Full Text] [Related]  

  • 24. L-lyxose metabolism employs the L-rhamnose pathway in mutant cells of Escherichia coli adapted to grow on L-lyxose.
    Badia J; Gimenez R; Baldomá L; Barnes E; Fessner WD; Aguilar J
    J Bacteriol; 1991 Aug; 173(16):5144-50. PubMed ID: 1650346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acquisition of ability to utilize Xylitol: disadvantages of a constitutive catabolic pathway in Escherichia coli.
    Scangos GA; Reiner AM
    J Bacteriol; 1978 May; 134(2):501-5. PubMed ID: 207668
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.
    Doten RC; Mortlock RP
    J Bacteriol; 1984 Aug; 159(2):730-5. PubMed ID: 6378891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.
    Radek A; Müller MF; Gätgens J; Eggeling L; Krumbach K; Marienhagen J; Noack S
    J Biotechnol; 2016 Aug; 231():160-166. PubMed ID: 27297548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient Biosynthesis of Xylitol from Xylose by Coexpression of Xylose Reductase and Glucose Dehydrogenase in Escherichia coli.
    Jin LQ; Xu W; Yang B; Liu ZQ; Zheng YG
    Appl Biochem Biotechnol; 2019 Apr; 187(4):1143-1157. PubMed ID: 30175383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding.
    Hibi M; Yukitomo H; Ito M; Mori H
    Appl Environ Microbiol; 2007 Dec; 73(23):7657-63. PubMed ID: 17921263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of xylitol-utilizing mutants of Erwinia uredovora.
    Doten RC; Mortlock RP
    J Bacteriol; 1985 Feb; 161(2):529-33. PubMed ID: 2981816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of xylitol by a Coniochaeta ligniaria strain tolerant of inhibitors and defective in growth on xylose.
    Nichols NN; Saha BC
    Biotechnol Prog; 2016 May; 32(3):606-12. PubMed ID: 26950770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures.
    Cirino PC; Chin JW; Ingram LO
    Biotechnol Bioeng; 2006 Dec; 95(6):1167-76. PubMed ID: 16838379
    [TBL] [Abstract][Full Text] [Related]  

  • 33. L-1,2-propanediol exits more rapidly than L-lactaldehyde from Escherichia coli.
    Zhu Y; Lin EC
    J Bacteriol; 1989 Feb; 171(2):862-7. PubMed ID: 2644239
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic pathway analysis of the xylose-metabolizing yeast protoplast fusant ZLYRHZ7.
    Ge J; Du R; Song G; Zhang Y; Ping W
    J Biosci Bioeng; 2017 Oct; 124(4):386-391. PubMed ID: 28527826
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolism of glucose and xylose as single and mixed feed in Debaryomyces nepalensis NCYC 3413: production of industrially important metabolites.
    Kumar S; Gummadi SN
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1405-15. PubMed ID: 21085948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental evolution of a metabolic pathway for ethylene glycol utilization by Escherichia coli.
    Boronat A; Caballero E; Aguilar J
    J Bacteriol; 1983 Jan; 153(1):134-9. PubMed ID: 6336729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation and reduction of D-xylose by cell-free extract of Pichia quercuum.
    Suzuki T; Onishi H
    Appl Microbiol; 1973 May; 25(5):850-2. PubMed ID: 4146025
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis.
    Zhang X; Chen G; Liu W
    FEMS Microbiol Lett; 2009 Apr; 293(2):214-9. PubMed ID: 19239494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties, and comparison with the fucose-induced enzyme.
    Boronat A; Aguilar J
    J Bacteriol; 1979 Nov; 140(2):320-6. PubMed ID: 40956
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of xylitol-assimilating mutants of recombinant Saccharomyces cerevisiae.
    Tani T; Taguchi H; Fujimori KE; Sahara T; Ohgiya S; Kamagata Y; Akamatsu T
    J Biosci Bioeng; 2016 Oct; 122(4):446-55. PubMed ID: 27067371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.