BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 17958393)

  • 1. A review on spectrophotometric methods for measuring the monophenolase and diphenolase activities of tyrosinase.
    García-Molina F; Muñoz JL; Varón R; Rodríguez-López JN; García-Cánovas F; Tudela J
    J Agric Food Chem; 2007 Nov; 55(24):9739-49. PubMed ID: 17958393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unification for the expression of the monophenolase and diphenolase activities of tyrosinase.
    Fenoll LG; Rodríguez-López JN; García-Molina F; García-Cánovas F; Tudela J
    IUBMB Life; 2002 Sep; 54(3):137-41. PubMed ID: 12489641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoproterenol oxidation by tyrosinase: intermediates characterization and kinetic study.
    Jiménez M; García-Cánovas F; García-Carmona F; Iborra JL; Lozano JA
    Biochem Int; 1985 Jul; 11(1):51-9. PubMed ID: 2994673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Tyrosinase-oxidoreductase; monophenol, o-diphenol: O2].
    Porebska-Budny M; Dworzański JP
    Postepy Biochem; 1988; 34(4):375-94. PubMed ID: 3152013
    [No Abstract]   [Full Text] [Related]  

  • 5. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effects of cupferron on the monophenolase and diphenolase activity of mushroom tyrosinase.
    Xie LP; Chen QX; Huang H; Liu XD; Chen HT; Zhang RQ
    Int J Biochem Cell Biol; 2003 Dec; 35(12):1658-66. PubMed ID: 12962705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diphenol activation of the monophenolase and diphenolase activities of field bean (Dolichos lablab) polyphenol oxidase.
    Gowda LR; Paul B
    J Agric Food Chem; 2002 Mar; 50(6):1608-14. PubMed ID: 11879044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp shares catalytic capabilities of tyrosinases and laccases.
    Sanchez-Amat A; Solano F
    Biochem Biophys Res Commun; 1997 Nov; 240(3):787-92. PubMed ID: 9398646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid method for detection of tyrosinase activity in electrophoresis.
    Nellaiappan K; Vinayagam A
    Stain Technol; 1986 Sep; 61(5):269-72. PubMed ID: 3097880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A continuous spectrophotometric method for the determination of diphenolase activity of tyrosinase using 3,4-dihydroxymandelic acid.
    Rodríguez-López JN; Serna-Rodríguez P; Tudela J; Varón R; Garcia-Cánovas F
    Anal Biochem; 1991 Jun; 195(2):369-74. PubMed ID: 1750693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4-Hydroxyanisole: the most suitable monophenolic substrate for determining spectrophotometrically the monophenolase activity of polyphenol oxidase from fruits and vegetables.
    Espín JC; Tudela J; García-Cánovas F
    Anal Biochem; 1998 May; 259(1):118-26. PubMed ID: 9606152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3-hydroxykynurenine as a substrate/activator for mushroom tyrosinase.
    Sanjust E; Cecchini G; Sollai F; Curreli N; Rescigno A
    Arch Biochem Biophys; 2003 Apr; 412(2):272-8. PubMed ID: 12667492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A continuous spectrophotometric method for determining the monophenolase and diphenolase activities of apple polyphenol oxidase.
    Espín JC; Morales M; Varón R; Tudela J; García-Cánovas F
    Anal Biochem; 1995 Oct; 231(1):237-46. PubMed ID: 8678307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of walnut tyrosinase into a catechol oxidase by site directed mutagenesis.
    Panis F; Kampatsikas I; Bijelic A; Rompel A
    Sci Rep; 2020 Feb; 10(1):1659. PubMed ID: 32015350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Quantitative determination of phenoloxidase (EC 1.14.18.1): absorption behavior of substrates and analogous compounds].
    Schmidt H
    Dermatol Monatsschr; 1985; 171(6):388-94. PubMed ID: 3926549
    [No Abstract]   [Full Text] [Related]  

  • 16. Considerations about the inhibition of monophenolase and diphenolase activities of tyrosinase. Characterization of the inhibitor concentration which generates 50 % of inhibition, type and inhibition constants. A review.
    García Molina P; Saura-Sanmartin A; Berna J; Teruel JA; Muñoz Muñoz JL; Rodríguez López JN; García Cánovas F; García Molina F
    Int J Biol Macromol; 2024 May; 267(Pt 2):131513. PubMed ID: 38608979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presence of tyrosinase activity in human ciliary body.
    Hayasaka S; Nakazawa M; Ishiguro S; Mizuno K
    Jpn J Ophthalmol; 1986; 30(1):32-5. PubMed ID: 3088305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Stability and catalytic properties of o-diphenol oxidase. 2. Oxidation of monophenols].
    Butovich IA
    Ukr Biokhim Zh (1978); 1986; 58(1):16-21. PubMed ID: 3080836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assays for mammalian tyrosinase: a comparative study.
    Jara JR; Solano F; Lozano JA
    Pigment Cell Res; 1988; 1(5):332-9. PubMed ID: 2907130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A substrate recycling assay for phenolic compounds using tyrosinase and NADH.
    Brown RS; Male KB; Luong JH
    Anal Biochem; 1994 Oct; 222(1):131-9. PubMed ID: 7856838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.