These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Using the concept of Chou's pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Jiang X; Wei R; Zhang T; Gu Q Protein Pept Lett; 2008; 15(4):392-6. PubMed ID: 18473953 [TBL] [Abstract][Full Text] [Related]
3. [Prediction of G-protein-coupled receptor classes with pseudo amino acid composition]. Gu Q; Ding Y; Zhang T; Shen Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):500-4. PubMed ID: 20649006 [TBL] [Abstract][Full Text] [Related]
4. Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Zhang TL; Ding YS Amino Acids; 2007 Nov; 33(4):623-9. PubMed ID: 17308864 [TBL] [Abstract][Full Text] [Related]
5. Using Chou's pseudo amino acid composition based on approximate entropy and an ensemble of AdaBoost classifiers to predict protein subnuclear location. Jiang X; Wei R; Zhao Y; Zhang T Amino Acids; 2008 May; 34(4):669-75. PubMed ID: 18256886 [TBL] [Abstract][Full Text] [Related]
6. Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes. Xiao X; Lin WZ; Chou KC J Comput Chem; 2008 Sep; 29(12):2018-24. PubMed ID: 18381630 [TBL] [Abstract][Full Text] [Related]
7. Fuzzy KNN for predicting membrane protein types from pseudo-amino acid composition. Shen HB; Yang J; Chou KC J Theor Biol; 2006 May; 240(1):9-13. PubMed ID: 16197963 [TBL] [Abstract][Full Text] [Related]
8. Prediction of G-protein-coupled receptor classes in low homology using Chou's pseudo amino acid composition with approximate entropy and hydrophobicity patterns. Gu Q; Ding YS; Zhang TL Protein Pept Lett; 2010 May; 17(5):559-67. PubMed ID: 19594431 [TBL] [Abstract][Full Text] [Related]
14. Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo-amino acid composition to predict membrane protein types. Shen H; Chou KC Biochem Biophys Res Commun; 2005 Aug; 334(1):288-92. PubMed ID: 16002049 [TBL] [Abstract][Full Text] [Related]
15. Prediction of protein-protein interactions based on PseAA composition and hybrid feature selection. Liu L; Cai Y; Lu W; Feng K; Peng C; Niu B Biochem Biophys Res Commun; 2009 Mar; 380(2):318-22. PubMed ID: 19171120 [TBL] [Abstract][Full Text] [Related]
16. Using pseudo-amino acid composition and support vector machine to predict protein structural class. Chen C; Tian YX; Zou XY; Cai PX; Mo JY J Theor Biol; 2006 Dec; 243(3):444-8. PubMed ID: 16908032 [TBL] [Abstract][Full Text] [Related]
17. Prediction of G-protein-coupled receptor classes based on the concept of Chou's pseudo amino acid composition: an approach from discrete wavelet transform. Qiu JD; Huang JH; Liang RP; Lu XQ Anal Biochem; 2009 Jul; 390(1):68-73. PubMed ID: 19364489 [TBL] [Abstract][Full Text] [Related]
18. Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Shi JY; Zhang SW; Pan Q; Cheng YM; Xie J Amino Acids; 2007 Jul; 33(1):69-74. PubMed ID: 17235454 [TBL] [Abstract][Full Text] [Related]
19. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis. Li ZC; Zhou XB; Dai Z; Zou XY Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140 [TBL] [Abstract][Full Text] [Related]
20. Multisite protein subcellular localization prediction based on entropy density. Zhao Q; Wang D; Chen Y; Qu X Biomed Mater Eng; 2015; 26 Suppl 1():S2003-9. PubMed ID: 26405976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]