BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17959407)

  • 1. Purification and detailed study of two clinically different human glucose 6-phosphate dehydrogenase variants, G6PD(Plymouth) and G6PD(Mahidol): Evidence for defective protein folding as the basis of disease.
    Huang Y; Choi MY; Au SW; Au DM; Lam VM; Engel PC
    Mol Genet Metab; 2008 Jan; 93(1):44-53. PubMed ID: 17959407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detailed functional analysis of two clinical glucose-6-phosphate dehydrogenase (G6PD) variants, G6PDViangchan and G6PDViangchan+Mahidol: Decreased stability and catalytic efficiency contribute to the clinical phenotype.
    Boonyuen U; Chamchoy K; Swangsri T; Saralamba N; Day NP; Imwong M
    Mol Genet Metab; 2016 Jun; 118(2):84-91. PubMed ID: 27053284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional properties of two mutants of human glucose 6-phosphate dehydrogenase, R393G and R393H, corresponding to the clinical variants G6PD Wisconsin and Nashville.
    Wang XT; Lam VM; Engel PC
    Biochim Biophys Acta; 2006 Aug; 1762(8):767-74. PubMed ID: 16934959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marked decrease in specific activity contributes to disease phenotype in two human glucose 6-phosphate dehydrogenase mutants, G6PD(Union) and G6PD(Andalus).
    Wang XT; Lam VM; Engel PC
    Hum Mutat; 2005 Sep; 26(3):284. PubMed ID: 16088936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical mutants of human glucose 6-phosphate dehydrogenase: impairment of NADP(+) binding affects both folding and stability.
    Wang XT; Engel PC
    Biochim Biophys Acta; 2009 Aug; 1792(8):804-9. PubMed ID: 19465117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Single and Double Mutants in Human Glucose-6-Phosphate Dehydrogenase Variants Present in the Mexican Population: Biochemical and Structural Analysis.
    Martínez-Rosas V; Juárez-Cruz MV; Ramírez-Nava EJ; Hernández-Ochoa B; Morales-Luna L; González-Valdez A; Serrano-Posada H; Cárdenas-Rodríguez N; Ortiz-Ramírez P; Centeno-Leija S; Arreguin-Espinosa R; Cuevas-Cruz M; Ortega-Cuellar D; Pérez de la Cruz V; Rocha-Ramírez LM; Sierra-Palacios E; Castillo-Rodríguez RA; Baeza-Ramírez I; Marcial-Quino J; Gómez-Manzo S
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional and Biochemical Characterization of Three Recombinant Human Glucose-6-Phosphate Dehydrogenase Mutants: Zacatecas, Vanua-Lava and Viangchan.
    Gómez-Manzo S; Marcial-Quino J; Vanoye-Carlo A; Serrano-Posada H; González-Valdez A; Martínez-Rosas V; Hernández-Ochoa B; Sierra-Palacios E; Castillo-Rodríguez RA; Cuevas-Cruz M; Rodríguez-Bustamante E; Arreguin-Espinosa R
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What is the role of the second "structural" NADP+-binding site in human glucose 6-phosphate dehydrogenase?
    Wang XT; Chan TF; Lam VM; Engel PC
    Protein Sci; 2008 Aug; 17(8):1403-11. PubMed ID: 18493020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effects of double mutations on catalytic activity and structural stability contribute to clinical manifestations of glucose-6-phosphate dehydrogenase deficiency.
    Pakparnich P; Sudsumrit S; Imwong M; Suteewong T; Chamchoy K; Pakotiprapha D; Leartsakulpanich U; Boonyuen U
    Sci Rep; 2021 Dec; 11(1):24307. PubMed ID: 34934109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical Analysis of Two Single Mutants that Give Rise to a Polymorphic G6PD A-Double Mutant.
    Ramírez-Nava EJ; Ortega-Cuellar D; Serrano-Posada H; González-Valdez A; Vanoye-Carlo A; Hernández-Ochoa B; Sierra-Palacios E; Hernández-Pineda J; Rodríguez-Bustamante E; Arreguin-Espinosa R; Oria-Hernández J; Reyes-Vivas H; Marcial-Quino J; Gómez-Manzo S
    Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29072585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations of Glucose-6-Phosphate Dehydrogenase Durham, Santa-Maria and A+ Variants Are Associated with Loss Functional and Structural Stability of the Protein.
    Gómez-Manzo S; Marcial-Quino J; Vanoye-Carlo A; Enríquez-Flores S; De la Mora-De la Mora I; González-Valdez A; García-Torres I; Martínez-Rosas V; Sierra-Palacios E; Lazcano-Pérez F; Rodríguez-Bustamante E; Arreguin-Espinosa R
    Int J Mol Sci; 2015 Dec; 16(12):28657-68. PubMed ID: 26633385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unproductive folding of the human G6PD-deficient variant A-.
    Gómez-Gallego F; Garrido-Pertierra A; Mason PJ; Bautista JM
    FASEB J; 1996 Jan; 10(1):153-8. PubMed ID: 8566536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of erythrocytic glucose-6-phosphate dehydrogenase in a mouse strain with reduced G6PD activity.
    Neifer S; Jung A; Bienzle U
    Biomed Biochim Acta; 1991; 50(3):233-8. PubMed ID: 1953691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stability of G6PD is affected by mutations with different clinical phenotypes.
    Gómez-Manzo S; Terrón-Hernández J; De la Mora-De la Mora I; González-Valdez A; Marcial-Quino J; García-Torres I; Vanoye-Carlo A; López-Velázquez G; Hernández-Alcántara G; Oria-Hernández J; Reyes-Vivas H; Enríquez-Flores S
    Int J Mol Sci; 2014 Nov; 15(11):21179-201. PubMed ID: 25407525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural studies of glucose-6-phosphate and NADP+ binding to human glucose-6-phosphate dehydrogenase.
    Kotaka M; Gover S; Vandeputte-Rutten L; Au SW; Lam VM; Adams MJ
    Acta Crystallogr D Biol Crystallogr; 2005 May; 61(Pt 5):495-504. PubMed ID: 15858258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular heterogeneity of glucose-6-phosphate dehydrogenase (G6PD) variants in the south of Thailand and identification of a novel variant (G6PD Songklanagarind).
    Laosombat V; Sattayasevana B; Janejindamai W; Viprakasit V; Shirakawa T; Nishiyama K; Matsuo M
    Blood Cells Mol Dis; 2005; 34(2):191-6. PubMed ID: 15727905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical characteristics of glucose-6-phosphate dehydrogenase variants among the Malays of Singapore with report of a new non-deficient (GdSingapore) and three deficient variants.
    Saha N; Hong SH; Wong HA; Jeyaseelan K; Tay JS
    Jinrui Idengaku Zasshi; 1991 Dec; 36(4):307-12. PubMed ID: 1811096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-range structural defects by pathogenic mutations in most severe glucose-6-phosphate dehydrogenase deficiency.
    Horikoshi N; Hwang S; Gati C; Matsui T; Castillo-Orellana C; Raub AG; Garcia AA; Jabbarpour F; Batyuk A; Broweleit J; Xiang X; Chiang A; Broweleit R; Vöhringer-Martinez E; Mochly-Rosen D; Wakatsuki S
    Proc Natl Acad Sci U S A; 2021 Jan; 118(4):. PubMed ID: 33468660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New stable mutant (Gd(-) variants: G6PD Tashkent and G6PD Nucus. Molecular basis of hereditary enzyme deficiency.
    Yermakov N; Tokarev Ju; Chernjak N; Schönian G; Grieger M; Guckler A; Jacobasch G; Mahmudova M; Bahramov S
    Acta Biol Med Ger; 1981; 40(4-5):559-62. PubMed ID: 7315103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.