These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17959498)

  • 1. Stretchable microelectrode arrays--a tool for discovering mechanisms of functional deficits underlying traumatic brain injury and interfacing neurons with neuroprosthetics.
    Yu Z; Tsay C; Lacour SP; Wagner S; Morrison B
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6732-5. PubMed ID: 17959498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural sensing of electrical activity with stretchable microelectrode arrays.
    Yu Z; Graudejus O; Lacour SP; Wagner S; Morrison B
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4210-3. PubMed ID: 19964344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring hippocampus electrical activity in vitro on an elastically deformable microelectrode array.
    Yu Z; Graudejus O; Tsay C; Lacour SP; Wagner S; Morrison B
    J Neurotrauma; 2009 Jul; 26(7):1135-45. PubMed ID: 19594385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels.
    Cater HL; Gitterman D; Davis SM; Benham CD; Morrison B; Sundstrom LE
    J Neurochem; 2007 Apr; 101(2):434-47. PubMed ID: 17250683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in Hippocampal Network Activity after In Vitro Traumatic Brain Injury.
    Kang WH; Cao W; Graudejus O; Patel TP; Wagner S; Meaney DF; Morrison B
    J Neurotrauma; 2015 Jul; 32(13):1011-9. PubMed ID: 25517970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An in vitro model of traumatic brain injury utilising two-dimensional stretch of organotypic hippocampal slice cultures.
    Morrison B; Cater HL; Benham CD; Sundstrom LE
    J Neurosci Methods; 2006 Jan; 150(2):192-201. PubMed ID: 16098599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting changes in cortical electrophysiological function after in vitro traumatic brain injury.
    Kang WH; Morrison B
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1033-44. PubMed ID: 25628144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity.
    Graudejus O; Morrison B; Goletiani C; Yu Z; Wagner S
    Adv Funct Mater; 2012 Feb; 22(3):640-651. PubMed ID: 24093006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dense arrays of micro-needles for recording and electrical stimulation of neural activity in acute brain slices.
    Gunning DE; Beggs JM; Dabrowski W; Hottowy P; Kenney CJ; Sher A; Litke AM; Mathieson K
    J Neural Eng; 2013 Feb; 10(1):016007. PubMed ID: 23234809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold-coated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures.
    Nam Y; Chang JC; Wheeler BC; Brewer GJ
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):158-65. PubMed ID: 14723505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing.
    Liang Guo ; Guvanasen GS; Xi Liu ; Tuthill C; Nichols TR; DeWeerth SP
    IEEE Trans Biomed Circuits Syst; 2013 Feb; 7(1):1-10. PubMed ID: 23853274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stretch-Induced Injury Affects Cortical Neuronal Networks in a Time- and Severity-Dependent Manner.
    Sullivan D; Vaglio BJ; Cararo-Lopes MM; Wong RDP; Graudejus O; Firestein BL
    Ann Biomed Eng; 2024 Apr; 52(4):1021-1038. PubMed ID: 38294641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidics and multielectrode array-compatible organotypic slice culture method.
    Berdichevsky Y; Sabolek H; Levine JB; Staley KJ; Yarmush ML
    J Neurosci Methods; 2009 Mar; 178(1):59-64. PubMed ID: 19100768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective stimulation of the spinal cord surface using a stretchable microelectrode array.
    Meacham KW; Guo L; Deweerth SP; Hochman S
    Front Neuroeng; 2011; 4():5. PubMed ID: 21541256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high aspect ratio microelectrode array for mapping neural activity in vitro.
    Kibler AB; Jamieson BG; Durand DM
    J Neurosci Methods; 2012 Mar; 204(2):296-305. PubMed ID: 22179041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental mild traumatic brain injury induces functional alteration of the developing hippocampus.
    Yu Z; Morrison B
    J Neurophysiol; 2010 Jan; 103(1):499-510. PubMed ID: 19923245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multielectrode Arrays.
    Burley R; Harvey JRM
    Methods Mol Biol; 2021; 2188():109-132. PubMed ID: 33119849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel high electrode count spike recording array using an 81,920 pixel transimpedance amplifier-based imaging chip.
    Johnson LJ; Cohen E; Ilg D; Klein R; Skeath P; Scribner DA
    J Neurosci Methods; 2012 Apr; 205(2):223-32. PubMed ID: 22266817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomics of traumatic brain injury: gene expression and molecular pathways of different grades of insult in a rat organotypic hippocampal culture model.
    Di Pietro V; Amin D; Pernagallo S; Lazzarino G; Tavazzi B; Vagnozzi R; Pringle A; Belli A
    J Neurotrauma; 2010 Feb; 27(2):349-59. PubMed ID: 19903084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.