These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 17959605)
1. Functional characterization of Mia40p, the central component of the disulfide relay system of the mitochondrial intermembrane space. Grumbt B; Stroobant V; Terziyska N; Israel L; Hell K J Biol Chem; 2007 Dec; 282(52):37461-70. PubMed ID: 17959605 [TBL] [Abstract][Full Text] [Related]
2. Deciphering structural and functional roles of individual disulfide bonds of the mitochondrial sulfhydryl oxidase Erv1p. Ang SK; Lu H J Biol Chem; 2009 Oct; 284(42):28754-61. PubMed ID: 19679655 [TBL] [Abstract][Full Text] [Related]
3. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. Terziyska N; Grumbt B; Kozany C; Hell K J Biol Chem; 2009 Jan; 284(3):1353-63. PubMed ID: 19011240 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Gross DP; Burgard CA; Reddehase S; Leitch JM; Culotta VC; Hell K Mol Biol Cell; 2011 Oct; 22(20):3758-67. PubMed ID: 21865601 [TBL] [Abstract][Full Text] [Related]
5. The disulfide relay system of mitochondria is required for the biogenesis of mitochondrial Ccs1 and Sod1. Reddehase S; Grumbt B; Neupert W; Hell K J Mol Biol; 2009 Jan; 385(2):331-8. PubMed ID: 19010334 [TBL] [Abstract][Full Text] [Related]
6. Structure of yeast sulfhydryl oxidase erv1 reveals electron transfer of the disulfide relay system in the mitochondrial intermembrane space. Guo PC; Ma JD; Jiang YL; Wang SJ; Bao ZZ; Yu XJ; Chen Y; Zhou CZ J Biol Chem; 2012 Oct; 287(42):34961-34969. PubMed ID: 22910915 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial thiol oxidase Erv1: both shuttle cysteine residues are required for its function with distinct roles. Ang SK; Zhang M; Lodi T; Lu H Biochem J; 2014 Jun; 460(2):199-210. PubMed ID: 24625320 [TBL] [Abstract][Full Text] [Related]
8. A disulfide relay system in mitochondria. Tokatlidis K Cell; 2005 Jul; 121(7):965-7. PubMed ID: 15989945 [TBL] [Abstract][Full Text] [Related]
9. The Erv1-Mia40 disulfide relay system in the intermembrane space of mitochondria. Hell K Biochim Biophys Acta; 2008 Apr; 1783(4):601-9. PubMed ID: 18179776 [TBL] [Abstract][Full Text] [Related]
10. Redox pathways of the mitochondrion. Koehler CM; Beverly KN; Leverich EP Antioxid Redox Signal; 2006; 8(5-6):813-22. PubMed ID: 16771672 [TBL] [Abstract][Full Text] [Related]
11. The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria. Lionaki E; Aivaliotis M; Pozidis C; Tokatlidis K Antioxid Redox Signal; 2010 Nov; 13(9):1327-39. PubMed ID: 20367271 [TBL] [Abstract][Full Text] [Related]
12. Mia40 Protein Serves as an Electron Sink in the Mia40-Erv1 Import Pathway. Neal SE; Dabir DV; Tienson HL; Horn DM; Glaeser K; Ogozalek Loo RR; Barrientos A; Koehler CM J Biol Chem; 2015 Aug; 290(34):20804-20814. PubMed ID: 26085103 [TBL] [Abstract][Full Text] [Related]
13. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Mesecke N; Terziyska N; Kozany C; Baumann F; Neupert W; Hell K; Herrmann JM Cell; 2005 Jul; 121(7):1059-69. PubMed ID: 15989955 [TBL] [Abstract][Full Text] [Related]
14. Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Endo T; Yamano K; Kawano S Antioxid Redox Signal; 2010 Nov; 13(9):1359-73. PubMed ID: 20136511 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial protein import: precursor oxidation in a ternary complex with disulfide carrier and sulfhydryl oxidase. Stojanovski D; Milenkovic D; Müller JM; Gabriel K; Schulze-Specking A; Baker MJ; Ryan MT; Guiard B; Pfanner N; Chacinska A J Cell Biol; 2008 Oct; 183(2):195-202. PubMed ID: 18852299 [TBL] [Abstract][Full Text] [Related]
16. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Mordas A; Tokatlidis K Acc Chem Res; 2015 Aug; 48(8):2191-9. PubMed ID: 26214018 [TBL] [Abstract][Full Text] [Related]
17. Biogenesis of the essential Tim9-Tim10 chaperone complex of mitochondria: site-specific recognition of cysteine residues by the intermembrane space receptor Mia40. Milenkovic D; Gabriel K; Guiard B; Schulze-Specking A; Pfanner N; Chacinska A J Biol Chem; 2007 Aug; 282(31):22472-80. PubMed ID: 17553782 [TBL] [Abstract][Full Text] [Related]
18. Reconstitution of the mia40-erv1 oxidative folding pathway for the small tim proteins. Tienson HL; Dabir DV; Neal SE; Loo R; Hasson SA; Boontheung P; Kim SK; Loo JA; Koehler CM Mol Biol Cell; 2009 Aug; 20(15):3481-90. PubMed ID: 19477928 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Bien M; Longen S; Wagener N; Chwalla I; Herrmann JM; Riemer J Mol Cell; 2010 Feb; 37(4):516-28. PubMed ID: 20188670 [TBL] [Abstract][Full Text] [Related]
20. Role of twin Cys-Xaa9-Cys motif cysteines in mitochondrial import of the cytochrome C oxidase biogenesis factor Cmc1. Bourens M; Dabir DV; Tienson HL; Sorokina I; Koehler CM; Barrientos A J Biol Chem; 2012 Sep; 287(37):31258-69. PubMed ID: 22767599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]