BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 17959720)

  • 1. Nuclear accumulation of Smad complexes occurs only after the midblastula transition in Xenopus.
    Saka Y; Hagemann AI; Piepenburg O; Smith JC
    Development; 2007 Dec; 134(23):4209-18. PubMed ID: 17959720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A component of the ARC/Mediator complex required for TGF beta/Nodal signalling.
    Kato Y; Habas R; Katsuyama Y; Näär AM; He X
    Nature; 2002 Aug; 418(6898):641-6. PubMed ID: 12167862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rab5-mediated endocytosis of activin is not required for gene activation or long-range signalling in Xenopus.
    Hagemann AI; Xu X; Nentwich O; Hyvonen M; Smith JC
    Development; 2009 Aug; 136(16):2803-13. PubMed ID: 19605501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xenopus Smad4beta is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes.
    Howell M; Itoh F; Pierreux CE; Valgeirsdottir S; Itoh S; ten Dijke P; Hill CS
    Dev Biol; 1999 Oct; 214(2):354-69. PubMed ID: 10525340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of constitutively active Smad2 mutants: evaluation of formation of Smad complex and subcellular distribution.
    Funaba M; Mathews LS
    Mol Endocrinol; 2000 Oct; 14(10):1583-91. PubMed ID: 11043574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stoichiometry of active smad-transcription factor complexes on DNA.
    Inman GJ; Hill CS
    J Biol Chem; 2002 Dec; 277(52):51008-16. PubMed ID: 12374795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative analysis of signal transduction from activin receptor to nucleus and its relevance to morphogen gradient interpretation.
    Shimizu K; Gurdon JB
    Proc Natl Acad Sci U S A; 1999 Jun; 96(12):6791-6. PubMed ID: 10359791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function.
    Zhang Y; Musci T; Derynck R
    Curr Biol; 1997 Apr; 7(4):270-6. PubMed ID: 9094310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activin A induces neuronal differentiation and survival via ALK4 in a SMAD-independent manner in a subpopulation of human neuroblastomas.
    Suzuki K; Kobayashi T; Funatsu O; Morita A; Ikekita M
    Biochem Biophys Res Commun; 2010 Apr; 394(3):639-45. PubMed ID: 20226172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smad2 and Smad3 differentially modulate chordin transcription via direct binding on the distal elements in gastrula Xenopus embryos.
    Kumar V; Umair Z; Kumar S; Lee U; Kim J
    Biochem Biophys Res Commun; 2021 Jun; 559():168-175. PubMed ID: 33945994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of FAST-1 and Smads in transcriptional regulation by activin during early Xenopus embryogenesis.
    Yeo CY; Chen X; Whitman M
    J Biol Chem; 1999 Sep; 274(37):26584-90. PubMed ID: 10473623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of transforming growth factor beta-Smad signaling pathway in head and neck squamous cell carcinoma as evidenced by mutations of SMAD2 and SMAD4.
    Qiu W; Schönleben F; Li X; Su GH
    Cancer Lett; 2007 Jan; 245(1-2):163-70. PubMed ID: 16478646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A.
    Abe T; Furue M; Kondow A; Matsuzaki K; Asashima M
    Mech Dev; 2005 May; 122(5):671-80. PubMed ID: 15817224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes.
    Liu F; Pouponnot C; Massagué J
    Genes Dev; 1997 Dec; 11(23):3157-67. PubMed ID: 9389648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dominant-negative Smad2 mutants inhibit activin/Vg1 signaling and disrupt axis formation in Xenopus.
    Hoodless PA; Tsukazaki T; Nishimatsu S; Attisano L; Wrana JL; Thomsen GH
    Dev Biol; 1999 Mar; 207(2):364-79. PubMed ID: 10068469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A.
    Bourgeois B; Gilquin B; Tellier-Lebègue C; Östlund C; Wu W; Pérez J; El Hage P; Lallemand F; Worman HJ; Zinn-Justin S
    Sci Signal; 2013 Jun; 6(280):ra49. PubMed ID: 23779087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus.
    Pierreux CE; Nicolás FJ; Hill CS
    Mol Cell Biol; 2000 Dec; 20(23):9041-54. PubMed ID: 11074002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of the gene transcription and apoptosis mediated by TGF-beta-Smad2/3-Smad4 signaling.
    Yu J; Zhang L; Chen A; Xiang G; Wang Y; Wu J; Mitchelson K; Cheng J; Zhou Y
    J Cell Physiol; 2008 May; 215(2):422-33. PubMed ID: 17960585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smad4 and FAST-1 in the assembly of activin-responsive factor.
    Chen X; Weisberg E; Fridmacher V; Watanabe M; Naco G; Whitman M
    Nature; 1997 Sep; 389(6646):85-9. PubMed ID: 9288972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Smad2 and Smad3 cooperate and antagonize simultaneously in vertebrate neurogenesis.
    Míguez DG; Gil-Guiñón E; Pons S; Martí E
    J Cell Sci; 2013 Dec; 126(Pt 23):5335-43. PubMed ID: 24105267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.