These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 17959928)

  • 1. Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA.
    Chen G; Wen JD; Tinoco I
    RNA; 2007 Dec; 13(12):2175-88. PubMed ID: 17959928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biphasic folding kinetics of RNA pseudoknots and telomerase RNA activity.
    Cao S; Chen SJ
    J Mol Biol; 2007 Mar; 367(3):909-24. PubMed ID: 17276459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule fluorescence resonance energy transfer studies of the human telomerase RNA pseudoknot: temperature-/urea-dependent folding kinetics and thermodynamics.
    Holmstrom ED; Nesbitt DJ
    J Phys Chem B; 2014 Apr; 118(14):3853-63. PubMed ID: 24617561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of the pseudoknot structure in human telomerase RNA.
    Chen JL; Greider CW
    Proc Natl Acad Sci U S A; 2005 Jun; 102(23):8080-5; discussion 8077-9. PubMed ID: 15849264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural conservation in the template/pseudoknot domain of vertebrate telomerase RNA from teleost fish to human.
    Wang Y; Yesselman JD; Zhang Q; Kang M; Feigon J
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):E5125-34. PubMed ID: 27531956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human telomerase RNA pseudoknot and hairpin thermal stability with glycine betaine and urea: preferential interactions with RNA secondary and tertiary structures.
    Schwinefus JJ; Kuprian MJ; Lamppa JW; Merker WE; Dorn KN; Muth GW
    Biochemistry; 2007 Aug; 46(31):9068-79. PubMed ID: 17630773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding of human telomerase RNA pseudoknot using ion-jump and temperature-quench simulations.
    Biyun S; Cho SS; Thirumalai D
    J Am Chem Soc; 2011 Dec; 133(50):20634-43. PubMed ID: 22082261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic characterization of the Saccharomyces cerevisiae telomerase RNA pseudoknot domain in vitro.
    Liu F; Kim Y; Cruickshank C; Theimer CA
    RNA; 2012 May; 18(5):973-91. PubMed ID: 22450759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of dyskeratosis congenita mutations on the structure and dynamics of the human telomerase RNA pseudoknot domain.
    Yingling YG; Shapiro BA
    J Biomol Struct Dyn; 2007 Feb; 24(4):303-20. PubMed ID: 17206847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the mechanical unfolding of RNA pseudoknots.
    Green L; Kim CH; Bustamante C; Tinoco I
    J Mol Biol; 2008 Jan; 375(2):511-28. PubMed ID: 18021801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications for -1 ribosomal frameshifting stimulation.
    Zhong Z; Yang L; Zhang H; Shi J; Vandana JJ; Lam DT; Olsthoorn RC; Lu L; Chen G
    Sci Rep; 2016 Dec; 6():39549. PubMed ID: 28000744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic behavior of the telomerase RNA hairpin structure and its relationship to dyskeratosis congenita.
    Yingling YG; Shapiro BA
    J Mol Biol; 2005 Apr; 348(1):27-42. PubMed ID: 15808851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and folding of the Tetrahymena telomerase RNA pseudoknot.
    Cash DD; Feigon J
    Nucleic Acids Res; 2017 Jan; 45(1):482-495. PubMed ID: 27899638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. YNMG tetraloop formation by a dyskeratosis congenita mutation in human telomerase RNA.
    Theimer CA; Finger LD; Feigon J
    RNA; 2003 Dec; 9(12):1446-55. PubMed ID: 14624001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of template handling and pseudoknot folding in human telomerase and their manipulation to expand the sequence repertoire of processive repeat synthesis.
    Deshpande AP; Collins K
    Nucleic Acids Res; 2018 Sep; 46(15):7886-7901. PubMed ID: 29986069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The prediction of the wild-type telomerase RNA pseudoknot structure and the pivotal role of the bulge in its formation.
    Yingling YG; Shapiro BA
    J Mol Graph Model; 2006 Oct; 25(2):261-74. PubMed ID: 16481205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional importance of telomerase pseudoknot revealed by single-molecule analysis.
    Mihalusova M; Wu JY; Zhuang X
    Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20339-44. PubMed ID: 21571642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA conformation in catalytically active human telomerase.
    Yeoman JA; Orte A; Ashbridge B; Klenerman D; Balasubramanian S
    J Am Chem Soc; 2010 Mar; 132(9):2852-3. PubMed ID: 20148555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule FRET reveals the folding dynamics of the human telomerase RNA pseudoknot domain.
    Hengesbach M; Kim NK; Feigon J; Stone MD
    Angew Chem Int Ed Engl; 2012 Jun; 51(24):5876-9. PubMed ID: 22544760
    [No Abstract]   [Full Text] [Related]  

  • 20. Triplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.
    Chen G; Chang KY; Chou MY; Bustamante C; Tinoco I
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12706-11. PubMed ID: 19628688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.