BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17959971)

  • 1. Central hypervolemia with hemodilution impairs dynamic cerebral autoregulation.
    Ogawa Y; Iwasaki K; Aoki K; Shibata S; Kato J; Ogawa S
    Anesth Analg; 2007 Nov; 105(5):1389-96, table of contents. PubMed ID: 17959971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrative regulation of human brain blood flow.
    Willie CK; Tzeng YC; Fisher JA; Ainslie PN
    J Physiol; 2014 Mar; 592(5):841-59. PubMed ID: 24396059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilateral nephrectomy impairs cardiovascular function and cerebral perfusion in a rat model of acute hemodilutional anemia.
    Chin K; Jiang H; Steinberg BE; Goldenberg NM; Desjardins JF; Kabir G; Liu E; Vanama R; Baker AJ; Deschamps A; Simpson JA; Maynes JT; Vinogradov SA; Connelly KA; Mazer CD; Hare GMT
    J Appl Physiol (1985); 2024 May; 136(5):1245-1259. PubMed ID: 38385183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic cerebral autoregulation quantification with spontaneous arterial blood pressure oscillations: Is transfer function analysis our best option?
    Brassard P; Smirl JD
    Exp Physiol; 2024 Apr; ():. PubMed ID: 38615245
    [No Abstract]   [Full Text] [Related]  

  • 5. On the challenge of assessing dynamic cerebral autoregulation.
    Brassard P; Roy MA; Labrecque L; Smirl JD
    Exp Physiol; 2024 May; ():. PubMed ID: 38712350
    [No Abstract]   [Full Text] [Related]  

  • 6. Cerebral blood flow velocity during simultaneous changes in mean arterial pressure and cardiac output in healthy volunteers.
    Lie SL; Hisdal J; Høiseth LØ
    Eur J Appl Physiol; 2021 Aug; 121(8):2207-2217. PubMed ID: 33890157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in Cerebral Hemodynamics During Microgravity: A Literature Review.
    Du J; Cui J; Yang J; Wang P; Zhang L; Luo B; Han B
    Med Sci Monit; 2021 Jan; 27():e928108. PubMed ID: 33446627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of Microgravity Analogs to Spaceflight on Cerebral Autoregulation.
    Kermorgant M; Nasr N; Czosnyka M; Arvanitis DN; Hélissen O; Senard JM; Pavy-Le Traon A
    Front Physiol; 2020; 11():778. PubMed ID: 32719617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Resistance Exercise and Nutritional Supplementation on Dynamic Cerebral Autoregulation in Head-Down Bed Rest.
    Kermorgant M; Nasr N; Custaud MA; Navasiolava N; Arbeille P; Guinet P; Labrunée M; Besnier F; Arvanitis DN; Czosnyka M; Senard JM; Pavy-Le Traon A
    Front Physiol; 2019; 10():1114. PubMed ID: 31507460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral Blood Flow Response During Bolus Normal Saline Infusion After Ischemic Stroke.
    Mullen MT; Parthasarathy AB; Zandieh A; Baker WB; Mesquita RC; Loomis C; Torres J; Guo W; Favilla CG; Messé SR; Yodh AG; Detre JA; Kasner SE
    J Stroke Cerebrovasc Dis; 2019 Nov; 28(11):104294. PubMed ID: 31416759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cerebral autoregulation after confinement in an isolated environment for 14 days.
    Kato T; Yanagida R; Takko C; Kurazumi T; Inoue N; Suzuki G; Ogawa Y; Furukawa S; Iwasaki KI
    Environ Health Prev Med; 2018 Dec; 23(1):61. PubMed ID: 30522430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of fluid challenge increase in cardiac output on the relationship between systemic and cerebral hemodynamics in severe sepsis compared to brain injury and controls.
    Le Dorze M; Huché F; Coelembier C; Rabuel C; Payen D
    Ann Intensive Care; 2018 Jun; 8(1):74. PubMed ID: 29956057
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal autoregulation and blood pressure management in circulatory shock.
    Post EH; Vincent JL
    Crit Care; 2018 Mar; 22(1):81. PubMed ID: 29566705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral Oximetry and Autoregulation during Cardiopulmonary Bypass: A Review.
    Vranken NPA; Weerwind PW; Sutedja NA; Ševerdija EE; Barenbrug PJC; Maessen JG
    J Extra Corpor Technol; 2017 Sep; 49(3):182-191. PubMed ID: 28979042
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aging modifies the effect of cardiac output on middle cerebral artery blood flow velocity.
    Bronzwaer AGT; Verbree J; Stok WJ; Daemen MJAP; van Buchem MA; van Osch MJP; van Lieshout JJ
    Physiol Rep; 2017 Sep; 5(17):. PubMed ID: 28912128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of dynamic cerebral autoregulation and cerebral carbon dioxide reactivity during normothermic cardiopulmonary bypass.
    Ševerdija EE; Gommer ED; Weerwind PW; Reulen JP; Mess WH; Maessen JG
    Med Biol Eng Comput; 2015 Mar; 53(3):195-203. PubMed ID: 25412609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoregulation and mechanotransduction control the arteriolar response to small changes in hematocrit.
    Sriram K; Salazar Vázquez BY; Tsai AG; Cabrales P; Intaglietta M; Tartakovsky DM
    Am J Physiol Heart Circ Physiol; 2012 Nov; 303(9):H1096-106. PubMed ID: 22923620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perioperative management of adult traumatic brain injury.
    Sharma D; Vavilala MS
    Anesthesiol Clin; 2012 Jun; 30(2):333-46. PubMed ID: 22901613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perioperative management of traumatic brain injury.
    Curry P; Viernes D; Sharma D
    Int J Crit Illn Inj Sci; 2011 Jan; 1(1):27-35. PubMed ID: 22096771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between cardiac output and dynamic cerebral autoregulation in humans.
    Deegan BM; Devine ER; Geraghty MC; Jones E; Ólaighin G; Serrador JM
    J Appl Physiol (1985); 2010 Nov; 109(5):1424-31. PubMed ID: 20689094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.