BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 17959971)

  • 21. Acute exposure to normobaric mild hypoxia alters dynamic relationships between blood pressure and cerebral blood flow at very low frequency.
    Iwasaki K; Ogawa Y; Shibata S; Aoki K
    J Cereb Blood Flow Metab; 2007 Apr; 27(4):776-84. PubMed ID: 16926845
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic blood pressure control and middle cerebral artery mean blood velocity variability at rest and during exercise in humans.
    Ogoh S; Dalsgaard MK; Secher NH; Raven PB
    Acta Physiol (Oxf); 2007 Sep; 191(1):3-14. PubMed ID: 17506866
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different effects of naproxen on the organ blood flows in normo- and hypervolemic anaesthetized rats.
    Hably C; Borsos G; Bartha J
    Acta Physiol Hung; 1994; 82(3):267-79. PubMed ID: 7717089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Autoregulation of dynamic cerebral blood flow during hypotensive anesthesia with prostaglandin E1 or nitroglycerin].
    Kubota N; Iwasaki K; Ishikawa H; Shiozawa T; Kato J; Ogawa S
    Masui; 2004 Apr; 53(4):376-84. PubMed ID: 15160662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of pulse pressure variation to estimate changes in preload during experimental acute normovolemic hemodilution.
    Sant'Ana AJ; Otsuki DA; Noel-Morgan J; Leite VF; Fantoni DT; Abrahao Hajjar L; Barbosa Gomes Galas FR; Pinheiro De Almeida J; Fukushima J; Costa Auler JO
    Minerva Anestesiol; 2012 Apr; 78(4):426-33. PubMed ID: 22240618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decreased steady-state cerebral blood flow velocity and altered dynamic cerebral autoregulation during 5-h sustained 15% O2 hypoxia.
    Nishimura N; Iwasaki K; Ogawa Y; Aoki K
    J Appl Physiol (1985); 2010 May; 108(5):1154-61. PubMed ID: 20224002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of dynamic changes in cerebral autoregulation.
    Noack F; Christ M; May SA; Steinmeier R; Morgenstern U
    Biomed Tech (Berl); 2007 Feb; 52(1):31-6. PubMed ID: 17313331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of an acute increase in central blood volume on the response of cerebral blood flow to acute hypotension.
    Ogoh S; Hirasawa A; Sugawara J; Nakahara H; Ueda S; Shoemaker JK; Miyamoto T
    J Appl Physiol (1985); 2015 Sep; 119(5):527-33. PubMed ID: 26159757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High spontaneous fluctuation in arterial blood pressure improves the assessment of cerebral autoregulation.
    Liu J; Simpson DM; Allen R
    Physiol Meas; 2005 Oct; 26(5):725-41. PubMed ID: 16088064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Autonomic neural control of dynamic cerebral autoregulation in humans.
    Zhang R; Zuckerman JH; Iwasaki K; Wilson TE; Crandall CG; Levine BD
    Circulation; 2002 Oct; 106(14):1814-20. PubMed ID: 12356635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cerebral hemodynamic and metabolic changes in patients with fulminant hepatic failure during liver transplantation.
    Ardizzone G; Arrigo A; Panaro F; Ornis S; Colombi R; Distefano S; Jarzembowski TM; Cerruti E
    Transplant Proc; 2004 Dec; 36(10):3060-4. PubMed ID: 15686694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemodilution impairs cerebral autoregulation, demonstrating the complexity of integrative physiology.
    Shoemaker JK
    Anesth Analg; 2007 Nov; 105(5):1179-81. PubMed ID: 17959937
    [No Abstract]   [Full Text] [Related]  

  • 33. Chronic hydrocephalus-induced changes in cerebral blood flow: mediation through cardiac effects.
    Dombrowski SM; Schenk S; Leichliter A; Leibson Z; Fukamachi K; Luciano MG
    J Cereb Blood Flow Metab; 2006 Oct; 26(10):1298-310. PubMed ID: 16495938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The different effects of midazolam and propofol sedation on dynamic cerebral autoregulation.
    Ogawa Y; Iwasaki K; Aoki K; Gokan D; Hirose N; Kato J; Ogawa S
    Anesth Analg; 2010 Nov; 111(5):1279-84. PubMed ID: 20881283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of substantia innominata in cerebral blood flow autoregulation.
    Ota K; Kitazono T; Ooboshi H; Kamouchi M; Katafuchi T; Aou S; Yamashita Y; Ibayashi S; Iida M
    Brain Res; 2007 Mar; 1135(1):146-53. PubMed ID: 17196949
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcranial Doppler assessment of cerebral autoregulation.
    Bellapart J; Fraser JF
    Ultrasound Med Biol; 2009 Jun; 35(6):883-93. PubMed ID: 19329245
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebral blood flow autoregulation in experimental liver failure.
    Dethloff TJ; Knudsen GM; Larsen FS
    J Cereb Blood Flow Metab; 2008 May; 28(5):916-26. PubMed ID: 18059432
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model of the interaction between autoregulation and neural activation in the brain.
    Payne SJ
    Math Biosci; 2006 Dec; 204(2):260-81. PubMed ID: 17010387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes.
    Aengevaeren VL; Claassen JA; Levine BD; Zhang R
    J Appl Physiol (1985); 2013 Jan; 114(2):195-202. PubMed ID: 23139365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in the intracranial rheoencephalogram at lower limit of cerebral blood flow autoregulation.
    Bodo M; Pearce FJ; Baranyi L; Armonda RA
    Physiol Meas; 2005 Apr; 26(2):S1-17. PubMed ID: 15798222
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.