These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
360 related articles for article (PubMed ID: 17960114)
1. The role of the conserved COOH-terminal triad in alphaA-crystallin aggregation and functionality. Li Y; Schmitz KR; Salerno JC; Koretz JF Mol Vis; 2007 Sep; 13():1758-68. PubMed ID: 17960114 [TBL] [Abstract][Full Text] [Related]
2. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Pasta SY; Raman B; Ramakrishna T; Rao ChM Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619 [TBL] [Abstract][Full Text] [Related]
3. NH2-terminal stabilization of small heat shock protein structure: a comparison of two NH2-terminal deletion mutants of alphaA-crystallin. Yang C; Salerno JC; Koretz JF Mol Vis; 2005 Aug; 11():641-7. PubMed ID: 16145541 [TBL] [Abstract][Full Text] [Related]
4. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region. Kundu M; Sen PC; Das KP Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631 [TBL] [Abstract][Full Text] [Related]
5. The cataract-causing mutation G98R in human alphaA-crystallin leads to folding defects and loss of chaperone activity. Singh D; Raman B; Ramakrishna T; Rao ChM Mol Vis; 2006 Nov; 12():1372-9. PubMed ID: 17149363 [TBL] [Abstract][Full Text] [Related]
6. A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin. Treweek TM; Rekas A; Walker MJ; Carver JA Exp Eye Res; 2010 Nov; 91(5):691-9. PubMed ID: 20732317 [TBL] [Abstract][Full Text] [Related]
7. Influence of the C-terminal residues on oligomerization of alpha A-crystallin. Thampi P; Abraham EC Biochemistry; 2003 Oct; 42(40):11857-63. PubMed ID: 14529298 [TBL] [Abstract][Full Text] [Related]
8. Mixed oligomer formation between human alphaA-crystallin and its cataract-causing G98R mutant: structural, stability and functional differences. Singh D; Raman B; Ramakrishna T; Rao ChM J Mol Biol; 2007 Nov; 373(5):1293-304. PubMed ID: 17900621 [TBL] [Abstract][Full Text] [Related]
9. AlphaA-crystallin interacting regions in the small heat shock protein, alphaB-crystallin. Sreelakshmi Y; Santhoshkumar P; Bhattacharyya J; Sharma KK Biochemistry; 2004 Dec; 43(50):15785-95. PubMed ID: 15595834 [TBL] [Abstract][Full Text] [Related]
10. Role of the IXI/V motif in oligomer assembly and function of StHsp14.0, a small heat shock protein from the acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Saji H; Iizuka R; Yoshida T; Abe T; Kidokoro S; Ishii N; Yohda M Proteins; 2008 May; 71(2):771-82. PubMed ID: 17979194 [TBL] [Abstract][Full Text] [Related]
11. Maintenance of chaperone-like activity despite mutations in a conserved region of murine lens alphaB crystallin. Hepburne-Scott HW; Crabbe MJ Mol Vis; 1999 Aug; 5():15. PubMed ID: 10445957 [TBL] [Abstract][Full Text] [Related]
12. Role of arginine-163 and the 163REEK166 motif in the oligomerization of truncated alpha A-crystallins. Rajan S; Chandrashekar R; Aziz A; Abraham EC Biochemistry; 2006 Dec; 45(51):15684-91. PubMed ID: 17176090 [TBL] [Abstract][Full Text] [Related]
13. Tsp36, a tapeworm small heat-shock protein with a duplicated alpha-crystallin domain, forms dimers and tetramers with good chaperone-like activity. Kappé G; Aquilina JA; Wunderink L; Kamps B; Robinson CV; Garate T; Boelens WC; de Jong WW Proteins; 2004 Oct; 57(1):109-17. PubMed ID: 15326597 [TBL] [Abstract][Full Text] [Related]
14. Probing alpha-crystallin structure using chemical cross-linkers and mass spectrometry. Peterson JJ; Young MM; Takemoto LJ Mol Vis; 2004 Nov; 10():857-66. PubMed ID: 15570221 [TBL] [Abstract][Full Text] [Related]
15. Relationship between chaperone activity and oligomeric size of recombinant human alphaA- and alphaB-crystallin: a tryptic digestion study. Saha S; Das KP Proteins; 2004 Nov; 57(3):610-7. PubMed ID: 15382236 [TBL] [Abstract][Full Text] [Related]
16. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens. Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419 [TBL] [Abstract][Full Text] [Related]
17. Distinct interactions of αA-crystallin with homologous substrate proteins, δ-crystallin and argininosuccinate lyase, under thermal stress. Chen YH; Lee MT; Cheng YW; Chou WY; Yu CM; Lee HJ Biochimie; 2011 Feb; 93(2):314-20. PubMed ID: 20937351 [TBL] [Abstract][Full Text] [Related]
18. Significance of alpha-crystallin heteropolymer with a 3:1 alphaA/alphaB ratio: chaperone-like activity, structure and hydrophobicity. Srinivas PN; Reddy PY; Reddy GB Biochem J; 2008 Sep; 414(3):453-60. PubMed ID: 18479247 [TBL] [Abstract][Full Text] [Related]
19. Heat-induced quaternary transitions in hetero- and homo-polymers of alpha-crystallin. Burgio MR; Bennett PM; Koretz JF Mol Vis; 2001 Oct; 7():228-33. PubMed ID: 11590365 [TBL] [Abstract][Full Text] [Related]
20. Structural and functional roles for beta-strand 7 in the alpha-crystallin domain of p26, a polydisperse small heat shock protein from Artemia franciscana. Sun Y; Bojikova-Fournier S; MacRae TH FEBS J; 2006 Mar; 273(5):1020-34. PubMed ID: 16478475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]