These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 17960258)
1. Surface electrochemistry of CO as a probe molecule on carbon-supported Se-surface modified Ru nanoparticles via infrared reflection absorption spectroscopy. Savinova ER; Hahn F; Alonso-Vante N Phys Chem Chem Phys; 2007 Nov; 9(42):5693-9. PubMed ID: 17960258 [TBL] [Abstract][Full Text] [Related]
2. The effects of the specific adsorption of anion on the reactivity of the Ru(0001) surface towards CO adsorption and oxidation: in situ FTIRS studies. Jin JM; Lin WF; Christensen PA Phys Chem Chem Phys; 2008 Jul; 10(25):3774-83. PubMed ID: 18563238 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction. Zaikovskii VI; Nagabhushana KS; Kriventsov VV; Loponov KN; Cherepanova SV; Kvon RI; Bönnemann H; Kochubey DI; Savinova ER J Phys Chem B; 2006 Apr; 110(13):6881-90. PubMed ID: 16570998 [TBL] [Abstract][Full Text] [Related]
5. Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods: oxidation of CO adsorbed on carbon-supported Pt catalyst and unsupported Pt black. Kunimatsu K; Sato T; Uchida H; Watanabe M Langmuir; 2008 Apr; 24(7):3590-601. PubMed ID: 18288871 [TBL] [Abstract][Full Text] [Related]
6. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability. Fan M; Brolo AG Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901 [TBL] [Abstract][Full Text] [Related]
7. Surface electrochemistry of CO on reconstructed gold single crystal surfaces studied by infrared reflection absorption spectroscopy and rotating disk electrode. Blizanac BB; Arenz M; Ross PN; Marković NM J Am Chem Soc; 2004 Aug; 126(32):10130-41. PubMed ID: 15303889 [TBL] [Abstract][Full Text] [Related]
8. Surface-enhanced Raman spectroscopic evidence of methanol oxidation on ruthenium electrodes. Yang H; Yang Y; Zou S J Phys Chem B; 2006 Sep; 110(35):17296-301. PubMed ID: 16942061 [TBL] [Abstract][Full Text] [Related]
9. CO adsorption and CO and O coadsorption on Rh(111) studied by reflection absorption infrared spectroscopy and density functional theory. Krenn G; Bako I; Schennach R J Chem Phys; 2006 Apr; 124(14):144703. PubMed ID: 16626227 [TBL] [Abstract][Full Text] [Related]
11. Surface coordination of nitric oxide to a self-assembled monolayer of a triruthenium cluster: an in situ infrared spectroscopic study. Zhou W; Zhang Y; Abe M; Uosaki K; Osawa M; Sasaki Y; Ye S Langmuir; 2008 Aug; 24(15):8027-35. PubMed ID: 18590289 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical infrared characterization of CO comains on ruthenium-decorated platinum nanoparticles. Park S; Wieckowski A; Weaver MJ J Am Chem Soc; 2003 Feb; 125(8):2282-90. PubMed ID: 12590558 [TBL] [Abstract][Full Text] [Related]
13. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis. Song Z; Cai T; Hanson JC; Rodriguez JA; Hrbek J J Am Chem Soc; 2004 Jul; 126(27):8576-84. PubMed ID: 15238017 [TBL] [Abstract][Full Text] [Related]
14. Oxidation states and CO ligand exchange kinetics in a self-assembled monolayer of a triruthenium cluster studied by in situ infrared spectroscopy. Zhou W; Ye S; Abe M; Nishida T; Uosaki K; Osawa M; Sasaki Y Chemistry; 2005 Aug; 11(17):5040-54. PubMed ID: 15977278 [TBL] [Abstract][Full Text] [Related]
15. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation. Highfield J; Liu T; Loo YS; Grushko B; Borgna A Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363 [TBL] [Abstract][Full Text] [Related]
16. First principles study of oxygen adsorption on Se-modified Ru nanoparticles. Zuluaga S; Stolbov S J Phys Condens Matter; 2012 Aug; 24(34):345303. PubMed ID: 22871976 [TBL] [Abstract][Full Text] [Related]
17. The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. Arenz M; Mayrhofer KJ; Stamenkovic V; Blizanac BB; Tomoyuki T; Ross PN; Markovic NM J Am Chem Soc; 2005 May; 127(18):6819-29. PubMed ID: 15869305 [TBL] [Abstract][Full Text] [Related]
18. Carbon monoxide adsorption and oxidation on monolayer films of cubic platinum nanoparticles investigated by infrared-visible sum frequency generation vibrational spectroscopy. Kweskin SJ; Rioux RM; Habas SE; Komvopoulos K; Yang P; Somorjai GA J Phys Chem B; 2006 Aug; 110(32):15920-5. PubMed ID: 16898745 [TBL] [Abstract][Full Text] [Related]
19. Direct observation of the kinetically relevant site of CO hydrogenation on supported Ru catalyst at 700 K by time-resolved FT-IR spectroscopy. Wasylenko W; Frei H Phys Chem Chem Phys; 2007 Oct; 9(40):5497-502. PubMed ID: 17925976 [TBL] [Abstract][Full Text] [Related]
20. Size-dependent surface CO stretching frequency investigations on nanodiamond particles. Tu JS; Perevedentseva E; Chung PH; Cheng CL J Chem Phys; 2006 Nov; 125(17):174713. PubMed ID: 17100467 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]