BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 17960266)

  • 1. Integration of large-area polymer nanopillar arrays into microfluidic devices using in situ polymerization cast molding.
    Chen G; McCandless GT; McCarley RL; Soper SA
    Lab Chip; 2007 Nov; 7(11):1424-7. PubMed ID: 17960266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monolithic integration of well-ordered nanoporous structures in the microfluidic channels for bioseparation.
    Kuo CW; Shiu JY; Wei KH; Chen P
    J Chromatogr A; 2007 Aug; 1162(2):175-9. PubMed ID: 17628581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits.
    Chantiwas R; Hupert ML; Pullagurla SR; Balamurugan S; Tamarit-López J; Park S; Datta P; Goettert J; Cho YK; Soper SA
    Lab Chip; 2010 Dec; 10(23):3255-64. PubMed ID: 20938506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of lab-on chip platforms by hot embossing and photo patterning.
    Maurya DK; Ng WY; Mahabadi KA; Liang YN; Rodríguez I
    Biotechnol J; 2007 Nov; 2(11):1381-8. PubMed ID: 17886237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replica molding of high-aspect-ratio polymeric nanopillar arrays with high fidelity.
    Zhang Y; Lo CW; Taylor JA; Yang S
    Langmuir; 2006 Sep; 22(20):8595-601. PubMed ID: 16981781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free-standing, erect ultrahigh-aspect-ratio polymer nanopillar and nanotube ensembles.
    Chen G; Soper SA; McCarley RL
    Langmuir; 2007 Nov; 23(23):11777-81. PubMed ID: 17929951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy.
    Ruan C; Eres G; Wang W; Zhang Z; Gu B
    Langmuir; 2007 May; 23(10):5757-60. PubMed ID: 17425344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer waveguide backplanes for optical sensor interfaces in microfluidics.
    Lee KS; Lee HL; Ram RJ
    Lab Chip; 2007 Nov; 7(11):1539-45. PubMed ID: 17960283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control of cell adhesion on a PMMA polymer surface consisting of nanopillar arrays.
    Ahn J; Son SJ; Min J
    J Biotechnol; 2013 Apr; 164(4):543-8. PubMed ID: 23353729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-Induced NanoKneading (LINK): Deformation of Patterned Azopolymer Nanopillar Arrays via Photo-Fluidization.
    Ho JH; Shih TW; Liu CT; He HC; Lin YL; Lee LR; Lin KT; Tseng YH; Sugiyama T; Chen JT
    Macromol Rapid Commun; 2021 May; 42(9):e2000723. PubMed ID: 33543553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Curved polymer nanodiscs by wetting nanopores of anodic aluminum oxide templates with polymer nanospheres.
    Chi MH; Kao YH; Wei TH; Lee CW; Chen JT
    Nanoscale; 2014; 6(3):1340-6. PubMed ID: 24336801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of polymer microstructures for MEMS: sacrificial layer micromolding and patterned substrate micromolding.
    Ferrell N; Woodard J; Hansford D
    Biomed Microdevices; 2007 Dec; 9(6):815-21. PubMed ID: 17564840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-reactive acrylic copolymer for fabrication of microfluidic devices.
    Liu J; Sun X; Lee ML
    Anal Chem; 2005 Oct; 77(19):6280-7. PubMed ID: 16194089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoembossed polymer substrates for biomedical surface interaction studies.
    Mills CA; Martinez E; Errachid A; Engel E; Funes M; Moormann C; Wahlbrink T; Gomila G; Planell J; Samitier J
    J Nanosci Nanotechnol; 2007 Dec; 7(12):4588-94. PubMed ID: 18283849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kind of synthetic nanopillar arrays for studying single biomolecule.
    Li Q; Wang K; Xi D; Dang W; Ren Z; He Q; Bai J; Gu C
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7447-50. PubMed ID: 21137956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-tunable polymer nanofibrillar structures by oblique electron beam irradiation.
    Kim TI; Pang C; Suh KY
    Langmuir; 2009 Aug; 25(16):8879-82. PubMed ID: 19572526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large area UV casting using diverse polyacrylates of microchannels separated by high aspect ratio microwalls.
    Zhou WX; Chan-Park MB
    Lab Chip; 2005 May; 5(5):512-8. PubMed ID: 15856087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructure-dependent water-droplet adhesiveness change in superhydrophobic anodic aluminum oxide surfaces: from highly adhesive to self-cleanable.
    Lee W; Park BG; Kim DH; Ahn DJ; Park Y; Lee SH; Lee KB
    Langmuir; 2010 Feb; 26(3):1412-5. PubMed ID: 20039661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.