BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 17960272)

  • 1. Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference.
    Kwon KW; Choi SS; Lee SH; Kim B; Lee SN; Park MC; Kim P; Hwang SY; Suh KY
    Lab Chip; 2007 Nov; 7(11):1461-8. PubMed ID: 17960272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adhesion assays of endothelial cells on nanopatterned surfaces within a microfluidic channel.
    Hwang SY; Kwon KW; Jang KJ; Park MC; Lee JS; Suh KY
    Anal Chem; 2010 Apr; 82(7):3016-22. PubMed ID: 20218573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformability study of breast cancer cells using microfluidics.
    Hou HW; Li QS; Lee GY; Kumar AP; Ong CN; Lim CT
    Biomed Microdevices; 2009 Jun; 11(3):557-64. PubMed ID: 19082733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device.
    Du Z; Cheng KH; Vaughn MW; Collie NL; Gollahon LS
    Biomed Microdevices; 2007 Feb; 9(1):35-42. PubMed ID: 17103049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel.
    Chang WC; Lee LP; Liepmann D
    Lab Chip; 2005 Jan; 5(1):64-73. PubMed ID: 15616742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeletal role in differential adhesion patterns of normal fibroblasts and breast cancer cells inside silicon microenvironments.
    Nikkhah M; Strobl JS; Peddi B; Agah M
    Biomed Microdevices; 2009 Jun; 11(3):585-95. PubMed ID: 19089620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical analysis of cancerous and normal cells based on bulge generation in a microfluidic device.
    Kim YC; Park SJ; Park JK
    Analyst; 2008 Oct; 133(10):1432-9. PubMed ID: 18810292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of channel geometry on cell adhesion in microfluidic devices.
    Green JV; Kniazeva T; Abedi M; Sokhey DS; Taslim ME; Murthy SK
    Lab Chip; 2009 Mar; 9(5):677-85. PubMed ID: 19224017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic characterization of human breast cancer cells using a piezoresistive microcantilever.
    Shim S; Kim MG; Jo K; Kang YS; Lee B; Yang S; Shin SM; Lee JH
    J Biomech Eng; 2010 Oct; 132(10):104501. PubMed ID: 20887019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic and morphological differences between rapidly proliferating cancerous and normal breast epithelial cells.
    Meadows AL; Kong B; Berdichevsky M; Roy S; Rosiva R; Blanch HW; Clark DS
    Biotechnol Prog; 2008; 24(2):334-41. PubMed ID: 18307352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micropatterned surfaces for controlling cell adhesion and rolling under flow.
    Nalayanda DD; Kalukanimuttam M; Schmidtke DW
    Biomed Microdevices; 2007 Apr; 9(2):207-14. PubMed ID: 17160704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detachment of captured cancer cells under flow acceleration in a bio-functionalized microchannel.
    Cheung LS; Zheng X; Stopa A; Baygents JC; Guzman R; Schroeder JA; Heimark RL; Zohar Y
    Lab Chip; 2009 Jun; 9(12):1721-31. PubMed ID: 19495456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of estrogen receptor beta increases integrin alpha1 and integrin beta1 levels and enhances adhesion of breast cancer cells.
    Lindberg K; Ström A; Lock JG; Gustafsson JA; Haldosén LA; Helguero LA
    J Cell Physiol; 2010 Jan; 222(1):156-67. PubMed ID: 19780039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic dual capillary probe to collect messenger RNA from adherent cells and spheroids.
    Shiku H; Yamakawa T; Nashimoto Y; Takahashi Y; Torisawa YS; Yasukawa T; Ito-Sasaki T; Yokoo M; Abe H; Kambara H; Matsue T
    Anal Biochem; 2009 Feb; 385(1):138-42. PubMed ID: 19026981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new immunosensor for breast cancer cell detection using antibody-coated long alkylsilane self-assembled monolayers in a parallel plate flow chamber.
    Ehrhart JC; Bennetau B; Renaud L; Madrange JP; Thomas L; Morisot J; Brosseau A; Allano S; Tauc P; Tran PL
    Biosens Bioelectron; 2008 Nov; 24(3):467-74. PubMed ID: 18547800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall effects in continuous microfluidic magneto-affinity cell separation.
    Wu L; Zhang Y; Palaniapan M; Roy P
    Biotechnol Bioeng; 2010 May; 106(1):68-75. PubMed ID: 20091764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation.
    Lara O; Tong X; Zborowski M; Chalmers JJ
    Exp Hematol; 2004 Oct; 32(10):891-904. PubMed ID: 15504544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental model of affinity cell separation.
    Nordon RE; Milthorpe BK; Schindhelm K; Slowiaczek PR
    Cytometry; 1994 May; 16(1):25-33. PubMed ID: 8033732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclooxygenase-2 induces genomic instability, BCL2 expression, doxorubicin resistance, and altered cancer-initiating cell phenotype in MCF7 breast cancer cells.
    Singh B; Cook KR; Vincent L; Hall CS; Berry JA; Multani AS; Lucci A
    J Surg Res; 2008 Jun; 147(2):240-6. PubMed ID: 18498876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor initiating cancer stem cells from human breast cancer cell lines.
    Han JS; Crowe DL
    Int J Oncol; 2009 May; 34(5):1449-53. PubMed ID: 19360358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.