These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17960327)

  • 41. [Modeling of the SARS coronavirus main proteinase and conformational flexibility of the active site].
    Liu S; Pei J; Chen H; Zhu X; Liu Z; Ma W; He F; Lai L
    Beijing Da Xue Xue Bao Yi Xue Ban; 2003 May; 35 Suppl():62-5. PubMed ID: 12914221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 2. Peptide structure-activity studies.
    Dragovich PS; Webber SE; Babine RE; Fuhrman SA; Patick AK; Matthews DA; Reich SH; Marakovits JT; Prins TJ; Zhou R; Tikhe J; Littlefield ES; Bleckman TM; Wallace MB; Little TL; Ford CE; Meador JW; Ferre RA; Brown EL; Binford SL; DeLisle DM; Worland ST
    J Med Chem; 1998 Jul; 41(15):2819-34. PubMed ID: 9667971
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimization of triazine nitriles as rhodesain inhibitors: structure-activity relationships, bioisosteric imidazopyridine nitriles, and X-ray crystal structure analysis with human cathepsin L.
    Ehmke V; Winkler E; Banner DW; Haap W; Schweizer WB; Rottmann M; Kaiser M; Freymond C; Schirmeister T; Diederich F
    ChemMedChem; 2013 Jun; 8(6):967-75. PubMed ID: 23658062
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism of antiviral drug resistance of vaccinia virus: identification of residues in the viral DNA polymerase conferring differential resistance to antipoxvirus drugs.
    Gammon DB; Snoeck R; Fiten P; Krecmerová M; Holý A; De Clercq E; Opdenakker G; Evans DH; Andrei G
    J Virol; 2008 Dec; 82(24):12520-34. PubMed ID: 18842735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structural basis of inhibition of cysteine proteases by E-64 and its derivatives.
    Matsumoto K; Mizoue K; Kitamura K; Tse WC; Huber CP; Ishida T
    Biopolymers; 1999; 51(1):99-107. PubMed ID: 10380357
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Three-dimensional model of a substrate-bound SARS chymotrypsin-like cysteine proteinase predicted by multiple molecular dynamics simulations: catalytic efficiency regulated by substrate binding.
    Pang YP
    Proteins; 2004 Dec; 57(4):747-57. PubMed ID: 15690493
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A conditional-lethal vaccinia virus mutant demonstrates that the I7L gene product is required for virion morphogenesis.
    Byrd CM; Hruby DE
    Virol J; 2005 Feb; 2():4. PubMed ID: 15701171
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural analysis of foot-and-mouth disease virus 3C protease: a viable target for antiviral drugs?
    Curry S; Roqué-Rosell N; Sweeney TR; Zunszain PA; Leatherbarrow RJ
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):594-8. PubMed ID: 17511659
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Homology modeling of falcipain-2: validation, de novo ligand design and synthesis of novel inhibitors.
    Sabnis Y; Rosenthal PJ; Desai P; Avery MA
    J Biomol Struct Dyn; 2002 Apr; 19(5):765-74. PubMed ID: 11922834
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 4. Incorporation of P1 lactam moieties as L-glutamine replacements.
    Dragovich PS; Prins TJ; Zhou R; Webber SE; Marakovits JT; Fuhrman SA; Patick AK; Matthews DA; Lee CA; Ford CE; Burke BJ; Rejto PA; Hendrickson TF; Tuntland T; Brown EL; Meador JW; Ferre RA; Harr JE; Kosa MB; Worland ST
    J Med Chem; 1999 Apr; 42(7):1213-24. PubMed ID: 10197965
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro.
    Chen L; Gui C; Luo X; Yang Q; Günther S; Scandella E; Drosten C; Bai D; He X; Ludewig B; Chen J; Luo H; Yang Y; Yang Y; Zou J; Thiel V; Chen K; Shen J; Shen X; Jiang H
    J Virol; 2005 Jun; 79(11):7095-103. PubMed ID: 15890949
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of a non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold as a SARS 3CL protease inhibitor.
    Ohnishi K; Hattori Y; Kobayashi K; Akaji K
    Bioorg Med Chem; 2019 Jan; 27(2):425-435. PubMed ID: 30558861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Leishmania major: molecular modeling of cysteine proteases and prediction of new nonpeptide inhibitors.
    Selzer PM; Chen X; Chan VJ; Cheng M; Kenyon GL; Kuntz ID; Sakanari JA; Cohen FE; McKerrow JH
    Exp Parasitol; 1997 Nov; 87(3):212-21. PubMed ID: 9371086
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of human cathepsin V.
    Somoza JR; Zhan H; Bowman KK; Yu L; Mortara KD; Palmer JT; Clark JM; McGrath ME
    Biochemistry; 2000 Oct; 39(41):12543-51. PubMed ID: 11027133
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure-activity relationships of heteroaromatic esters as human rhinovirus 3C protease inhibitors.
    Im I; Lee ES; Choi SJ; Lee JY; Kim YC
    Bioorg Med Chem Lett; 2009 Jul; 19(13):3632-6. PubMed ID: 19464175
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toward the discovery of inhibitors of babesipain-1, a Babesia bigemina cysteine protease: in vitro evaluation, homology modeling and molecular docking studies.
    Pérez B; Antunes S; Gonçalves LM; Domingos A; Gomes JR; Gomes P; Teixeira C
    J Comput Aided Mol Des; 2013 Sep; 27(9):823-35. PubMed ID: 24129820
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design and structure-activity relationships of novel inhibitors of human rhinovirus 3C protease.
    Kawatkar SP; Gagnon M; Hoesch V; Tiong-Yip C; Johnson K; Ek M; Nilsson E; Lister T; Olsson L; Patel J; Yu Q
    Bioorg Med Chem Lett; 2016 Jul; 26(14):3248-3252. PubMed ID: 27265257
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of a novel inhibitor of dengue virus protease through use of a virtual screening drug discovery Web portal.
    Viswanathan U; Tomlinson SM; Fonner JM; Mock SA; Watowich SJ
    J Chem Inf Model; 2014 Oct; 54(10):2816-25. PubMed ID: 25263519
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes.
    Matthews DA; Dragovich PS; Webber SE; Fuhrman SA; Patick AK; Zalman LS; Hendrickson TF; Love RA; Prins TJ; Marakovits JT; Zhou R; Tikhe J; Ford CE; Meador JW; Ferre RA; Brown EL; Binford SL; Brothers MA; DeLisle DM; Worland ST
    Proc Natl Acad Sci U S A; 1999 Sep; 96(20):11000-7. PubMed ID: 10500114
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibitors of 3C cysteine proteinases from Picornaviridae.
    Lall MS; Jain RP; Vederas JC
    Curr Top Med Chem; 2004; 4(12):1239-53. PubMed ID: 15320724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.