These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 17960327)
61. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Silva LR; Guimarães AS; do Nascimento J; do Santos Nascimento IJ; da Silva EB; McKerrow JH; Cardoso SH; da Silva-Júnior EF Bioorg Med Chem; 2021 Jul; 41():116213. PubMed ID: 33992862 [TBL] [Abstract][Full Text] [Related]
62. Creating novel activated factor XI inhibitors through fragment based lead generation and structure aided drug design. Fjellström O; Akkaya S; Beisel HG; Eriksson PO; Erixon K; Gustafsson D; Jurva U; Kang D; Karis D; Knecht W; Nerme V; Nilsson I; Olsson T; Redzic A; Roth R; Sandmark J; Tigerström A; Öster L PLoS One; 2015; 10(1):e0113705. PubMed ID: 25629509 [TBL] [Abstract][Full Text] [Related]
63. In silico identification of noncompetitive inhibitors targeting an uncharacterized allosteric site of falcipain-2. Hernández González JE; Salas-Sarduy E; Hernández Alvarez L; Barreto Gomes DE; Pascutti PG; Oostenbrink C; Leite VBP J Comput Aided Mol Des; 2021 Oct; 35(10):1067-1079. PubMed ID: 34617191 [TBL] [Abstract][Full Text] [Related]
64. Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria. Thakurta PG; Biswas S; Chakrabarti C; Sundd M; Jagannadham MV; Dattagupta JK Biochemistry; 2004 Feb; 43(6):1532-40. PubMed ID: 14769029 [TBL] [Abstract][Full Text] [Related]
65. Molecular docking identifies the binding of 3-chloropyridine moieties specifically to the S1 pocket of SARS-CoV Mpro. Niu C; Yin J; Zhang J; Vederas JC; James MN Bioorg Med Chem; 2008 Jan; 16(1):293-302. PubMed ID: 17931870 [TBL] [Abstract][Full Text] [Related]
66. Application of bioinformatics in search for cleavable peptides of SARS-CoV M(pro) and chemical modification of octapeptides. Du Q; Wang S; Jiang Z; Gao W; Li Y; Wei D; Chou KC Med Chem; 2005 May; 1(3):209-13. PubMed ID: 16787316 [TBL] [Abstract][Full Text] [Related]
67. Structural-based virtual screening and in vitro assays for small molecules inhibiting the feline coronavirus 3CL protease as a surrogate platform for coronaviruses. Theerawatanasirikul S; Kuo CJ; Phecharat N; Chootip J; Lekcharoensuk C; Lekcharoensuk P Antiviral Res; 2020 Oct; 182():104927. PubMed ID: 32910955 [TBL] [Abstract][Full Text] [Related]
68. Benzothiophene-2-carboxamide derivatives as SENPs inhibitors with selectivity within SENPs family. Wang Z; Liu Y; Zhang J; Ullah S; Kang N; Zhao Y; Zhou H Eur J Med Chem; 2020 Oct; 204():112553. PubMed ID: 32717481 [TBL] [Abstract][Full Text] [Related]
69. Straightforward synthesis of 2,4,6-trisubstituted 1,3,5-triazine compounds targeting cysteine cathepsins K and S. Plebanek E; Chevrier F; Roy V; Garenne T; Lecaille F; Warszycki D; Bojarski AJ; Lalmanach G; Agrofoglio LA Eur J Med Chem; 2016 Oct; 121():12-20. PubMed ID: 27214508 [TBL] [Abstract][Full Text] [Related]
70. Development of novel dipeptide-like rhodesain inhibitors containing the 3-bromoisoxazoline warhead in a constrained conformation. Ettari R; Pinto A; Previti S; Tamborini L; Angelo IC; La Pietra V; Marinelli L; Novellino E; Schirmeister T; Zappalà M; Grasso S; De Micheli C; Conti P Bioorg Med Chem; 2015 Nov; 23(21):7053-60. PubMed ID: 26432608 [TBL] [Abstract][Full Text] [Related]
71. Identification of a new class of nonpeptidic inhibitors of cruzain. Brak K; Doyle PS; McKerrow JH; Ellman JA J Am Chem Soc; 2008 May; 130(20):6404-10. PubMed ID: 18435536 [TBL] [Abstract][Full Text] [Related]
72. Structures of falcipain-2 and falcipain-3 bound to small molecule inhibitors: implications for substrate specificity. Kerr ID; Lee JH; Pandey KC; Harrison A; Sajid M; Rosenthal PJ; Brinen LS J Med Chem; 2009 Feb; 52(3):852-7. PubMed ID: 19128015 [TBL] [Abstract][Full Text] [Related]
73. Crystal structure of glycyl endopeptidase from Carica papaya: a cysteine endopeptidase of unusual substrate specificity. O'Hara BP; Hemmings AM; Buttle DJ; Pearl LH Biochemistry; 1995 Oct; 34(40):13190-5. PubMed ID: 7548082 [TBL] [Abstract][Full Text] [Related]
74. Quantitative evaluation of each catalytic subsite of cathepsin B for inhibitory activity based on inhibitory activity-binding mode relationship of epoxysuccinyl inhibitors by X-ray crystal structure analyses of complexes. Watanabe D; Yamamoto A; Tomoo K; Matsumoto K; Murata M; Kitamura K; Ishida T J Mol Biol; 2006 Oct; 362(5):979-93. PubMed ID: 16950396 [TBL] [Abstract][Full Text] [Related]
75. Discovery of covalent enzyme inhibitors using virtual docking of covalent fragments. Chowdhury SR; Kennedy S; Zhu K; Mishra R; Chuong P; Nguyen AU; Kathman SG; Statsyuk AV Bioorg Med Chem Lett; 2019 Jan; 29(1):36-39. PubMed ID: 30455147 [TBL] [Abstract][Full Text] [Related]
76. Uncovering false positives on a virtual screening search for cruzain inhibitors. Malvezzi A; de Rezende L; Izidoro MA; Cezari MH; Juliano L; do Amaral A Bioorg Med Chem Lett; 2008 Jan; 18(1):350-4. PubMed ID: 17981033 [TBL] [Abstract][Full Text] [Related]
77. Structure-function relationship of Chikungunya nsP2 protease: A comparative study with papain. Ramakrishnan C; Kutumbarao NHV; Suhitha S; Velmurugan D Chem Biol Drug Des; 2017 May; 89(5):772-782. PubMed ID: 28054451 [TBL] [Abstract][Full Text] [Related]
78. Structural characterization of vivapain-2 and vivapain-3, cysteine proteases from Plasmodium vivax: comparative protein modeling and docking studies. Desai PV; Avery MA J Biomol Struct Dyn; 2004 Jun; 21(6):781-90. PubMed ID: 15107000 [TBL] [Abstract][Full Text] [Related]
79. A computational analysis of SARS cysteine proteinase-octapeptide substrate interaction: implication for structure and active site binding mechanism. Phakthanakanok K; Ratanakhanokchai K; Kyu KL; Sompornpisut P; Watts A; Pinitglang S BMC Bioinformatics; 2009 Jan; 10 Suppl 1(Suppl 1):S48. PubMed ID: 19208150 [TBL] [Abstract][Full Text] [Related]
80. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 1. Michael acceptor structure-activity studies. Dragovich PS; Webber SE; Babine RE; Fuhrman SA; Patick AK; Matthews DA; Lee CA; Reich SH; Prins TJ; Marakovits JT; Littlefield ES; Zhou R; Tikhe J; Ford CE; Wallace MB; Meador JW; Ferre RA; Brown EL; Binford SL; Harr JE; DeLisle DM; Worland ST J Med Chem; 1998 Jul; 41(15):2806-18. PubMed ID: 9667970 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]