These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 17960497)
1. The role of amino acids T148 and R281 in human dihydrolipoamide dehydrogenase. Wang YC; Wang ST; Li C; Chen LY; Liu WH; Chen PR; Chou MC; Liu TC J Biomed Sci; 2008 Jan; 15(1):37-46. PubMed ID: 17960497 [TBL] [Abstract][Full Text] [Related]
2. The role of N286 and D320 in the reaction mechanism of human dihydrolipoamide dehydrogenase (E3) center domain. Wang YC; Wang ST; Li C; Liu WH; Chen PR; Chen LY; Liu TC J Biomed Sci; 2007 Mar; 14(2):203-10. PubMed ID: 17171578 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of human dihydrolipoamide dehydrogenase: NAD+/NADH binding and the structural basis of disease-causing mutations. Brautigam CA; Chuang JL; Tomchick DR; Machius M; Chuang DT J Mol Biol; 2005 Jul; 350(3):543-52. PubMed ID: 15946682 [TBL] [Abstract][Full Text] [Related]
4. Site-directed mutagenesis of human dihydrolipoamide dehydrogenase: role of lysine-54 and glutamate-192 in stabilizing the thiolate-FAD intermediate. Liu TC; Hong YS; Korotchkina LG; Vettakkorumakankav NN; Patel MS Protein Expr Purif; 1999 Jun; 16(1):27-39. PubMed ID: 10336857 [TBL] [Abstract][Full Text] [Related]
5. Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme. Hsieh JY; Su KL; Ho PT; Hung HC Arch Biochem Biophys; 2009 Jul; 487(1):19-27. PubMed ID: 19464998 [TBL] [Abstract][Full Text] [Related]
6. A novel mutation in the dihydrolipoamide dehydrogenase E3 subunit gene (DLD) resulting in an atypical form of alpha-ketoglutarate dehydrogenase deficiency. Odièvre MH; Chretien D; Munnich A; Robinson BH; Dumoulin R; Masmoudi S; Kadhom N; Rötig A; Rustin P; Bonnefont JP Hum Mutat; 2005 Mar; 25(3):323-4. PubMed ID: 15712224 [TBL] [Abstract][Full Text] [Related]
7. Arginine 91 is not essential for flavin incorporation in hepatic cytochrome b(5) reductase. Marohnic CC; Barber MJ Arch Biochem Biophys; 2001 May; 389(2):223-33. PubMed ID: 11339812 [TBL] [Abstract][Full Text] [Related]
8. Protein-protein interaction revealed by NMR T(2) relaxation experiments: the lipoyl domain and E1 component of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. Howard MJ; Chauhan HJ; Domingo GJ; Fuller C; Perham RN J Mol Biol; 2000 Jan; 295(4):1023-37. PubMed ID: 10656808 [TBL] [Abstract][Full Text] [Related]
9. Characterization of two site-specifically mutated human dihydrolipoamide dehydrogenases (His-452----Gln and Glu-457----Gln). Kim H; Patel MS J Biol Chem; 1992 Mar; 267(8):5128-32. PubMed ID: 1347528 [TBL] [Abstract][Full Text] [Related]
10. Stoichiometry of binding of mature and truncated forms of the dihydrolipoamide dehydrogenase-binding protein to the dihydrolipoamide acetyltransferase core of the pyruvate dehydrogenase complex from Saccharomyces cerevisiae. Maeng CY; Yazdi MA; Reed LJ Biochemistry; 1996 May; 35(18):5879-82. PubMed ID: 8639549 [TBL] [Abstract][Full Text] [Related]
11. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A. Wille G; Ritter M; Weiss MS; König S; Mäntele W; Hübner G Biochemistry; 2005 Apr; 44(13):5086-94. PubMed ID: 15794646 [TBL] [Abstract][Full Text] [Related]
12. Characterization of human UDP-glucose dehydrogenase reveals critical catalytic roles for lysine 220 and aspartate 280. Easley KE; Sommer BJ; Boanca G; Barycki JJ; Simpson MA Biochemistry; 2007 Jan; 46(2):369-78. PubMed ID: 17209547 [TBL] [Abstract][Full Text] [Related]
13. Dihydrolipoamide dehydrogenase: structural and mechanistic aspects. Vettakkorumakankav NN; Patel MS Indian J Biochem Biophys; 1996 Jun; 33(3):168-76. PubMed ID: 8828286 [No Abstract] [Full Text] [Related]
15. A structural model for human dihydrolipoamide dehydrogenase. Jentoft JE; Shoham M; Hurst D; Patel MS Proteins; 1992 Sep; 14(1):88-101. PubMed ID: 1409563 [TBL] [Abstract][Full Text] [Related]
16. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein. Konas DW; Takaya N; Sharma M; Stuehr DJ Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414 [TBL] [Abstract][Full Text] [Related]
17. Mutational analysis of the AtNUDT7 Nudix hydrolase from Arabidopsis thaliana reveals residues required for protein quaternary structure formation and activity. Olejnik K; Płochocka D; Grynberg M; Goch G; Gruszecki WI; Basińska T; Kraszewska E Acta Biochim Pol; 2009; 56(2):291-300. PubMed ID: 19448856 [TBL] [Abstract][Full Text] [Related]
18. Cytochrome b5 reductase: the roles of the recessive congenital methemoglobinemia mutants P144L, L148P, and R159*. Davis CA; Crowley LJ; Barber MJ Arch Biochem Biophys; 2004 Nov; 431(2):233-44. PubMed ID: 15488472 [TBL] [Abstract][Full Text] [Related]
19. Putative reaction mechanism of heterologously expressed octopine dehydrogenase from the great scallop, Pecten maximus (L). Müller A; Janssen F; Grieshaber MK FEBS J; 2007 Dec; 274(24):6329-39. PubMed ID: 18028427 [TBL] [Abstract][Full Text] [Related]
20. Identification of the zinc binding ligands and the catalytic residue in human aspartoacylase, an enzyme involved in Canavan disease. Herga S; Berrin JG; Perrier J; Puigserver A; Giardina T FEBS Lett; 2006 Oct; 580(25):5899-904. PubMed ID: 17027983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]