BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17960540)

  • 1. Theoretical study of catalytic efficiency of a Diels-Alderase catalytic antibody: an indirect effect produced during the maturation process.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2008; 14(2):596-602. PubMed ID: 17960540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interplay between binding energy and catalysis in the evolution of a catalytic antibody.
    Ulrich HD; Mundorff E; Santarsiero BD; Driggers EM; Stevens RC; Schultz PG
    Nature; 1997 Sep; 389(6648):271-5. PubMed ID: 9305839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental determination of the absolute enantioselectivity of an antibody-catalyzed Diels-Alder reaction and theoretical explorations of the origins of stereoselectivity.
    Cannizzaro CE; Ashley JA; Janda KD; Houk KN
    J Am Chem Soc; 2003 Mar; 125(9):2489-506. PubMed ID: 12603137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical investigation of the origins of catalysis of a retro-Diels-Alder reaction by antibody 10F11.
    Leach AG; Houk KN; Reymond JL
    J Org Chem; 2004 May; 69(11):3683-92. PubMed ID: 15152997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoselectivity behavior of the AZ28 antibody catalyzed oxy-Cope rearrangement.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    J Phys Chem A; 2006 Jan; 110(2):726-30. PubMed ID: 16405346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A theoretical study of the catalytic mechanism of formate dehydrogenase.
    Castillo R; Oliva M; Martí S; Moliner V
    J Phys Chem B; 2008 Aug; 112(32):10012-22. PubMed ID: 18646819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalysis on the coastline: theozyme, molecular dynamics, and free energy perturbation analysis of antibody 21D8 catalysis of the decarboxylation of 5-nitro-3-carboxybenzisoxazole.
    Ujaque G; Tantillo DJ; Hu Y; Houk KN; Hotta K; Hilvert D
    J Comput Chem; 2003 Jan; 24(1):98-110. PubMed ID: 12483679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression improvement and mechanistic study of the retro-Diels-Alderase catalytic antibody 10F11 by site-directed mutagenesis.
    Zheng L; Goddard JP; Baumann U; Reymond JL
    J Mol Biol; 2004 Aug; 341(3):807-14. PubMed ID: 15288788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into a natural Diels-Alder reaction from the structure of macrophomate synthase.
    Ose T; Watanabe K; Mie T; Honma M; Watanabe H; Yao M; Oikawa H; Tanaka I
    Nature; 2003 Mar; 422(6928):185-9. PubMed ID: 12634789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum mechanics/molecular mechanics study of the catalytic cycle of water splitting in photosystem II.
    Sproviero EM; Gascón JA; McEvoy JP; Brudvig GW; Batista VS
    J Am Chem Soc; 2008 Mar; 130(11):3428-42. PubMed ID: 18290643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis.
    Xu J; Song J; Yan F; Chu H; Luo J; Zhao Y; Cheng X; Luo G; Zheng Q; Wei J
    J Mol Recognit; 2009; 22(4):293-300. PubMed ID: 19277948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward an understanding of the catalytic role of hydrogen-bond donor solvents in the hetero-Diels-Alder reaction between acetone and butadiene derivative.
    Polo V; Domingo LR; Andrés J
    J Phys Chem A; 2005 Nov; 109(45):10438-44. PubMed ID: 16833341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunological origins of binding and catalysis in a Diels-Alderase antibody.
    Romesberg FE; Spiller B; Schultz PG; Stevens RC
    Science; 1998 Mar; 279(5358):1929-33. PubMed ID: 9506942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct hydroxide attack is a plausible mechanism for amidase antibody 43C9.
    Chong LT; Bandyopadhyay P; Scanlan TS; Kuntz ID; Kollman PA
    J Comput Chem; 2003 Sep; 24(12):1371-7. PubMed ID: 12868101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ; Houk KN
    J Comput Chem; 2002 Jan; 23(1):84-95. PubMed ID: 11913392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density functional theory (DFT) and combined quantum mechanical/molecular mechanics (QM/MM) studies on the oxygen activation step in nitric oxide synthase enzymes.
    de Visser SP
    Biochem Soc Trans; 2009 Apr; 37(Pt 2):373-7. PubMed ID: 19290865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying free energy profiles of proton transfer reactions in solution and proteins by using a diabatic FDFT mapping.
    Xiang Y; Warshel A
    J Phys Chem B; 2008 Jan; 112(3):1007-15. PubMed ID: 18166038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins and predictions of stereoselective antibody catalysis: theoretical analysis of Diels-Alder catalysis by 39A11 and its germ-line antibody.
    Zhang X; Deng Q; Yoo SH; Houk KN
    J Org Chem; 2002 Dec; 67(25):9043-53. PubMed ID: 12467427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of water in the multifaceted catalytic antibody 4B2 for allylic isomerization and Kemp elimination reactions.
    Acevedo O
    J Phys Chem B; 2009 Nov; 113(46):15372-81. PubMed ID: 19860435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunological optimization of a generic hydrophobic pocket for high affinity hapten binding and Diels-Alder activity.
    Piatesi A; Hilvert D
    Chembiochem; 2004 Apr; 5(4):460-6. PubMed ID: 15185369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.