These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 17960911)

  • 1. Mutational analysis of the purine riboswitch aptamer domain.
    Gilbert SD; Love CE; Edwards AL; Batey RT
    Biochemistry; 2007 Nov; 46(46):13297-309. PubMed ID: 17960911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain.
    Gilbert SD; Stoddard CD; Wise SJ; Batey RT
    J Mol Biol; 2006 Jun; 359(3):754-68. PubMed ID: 16650860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.
    Noeske J; Buck J; Fürtig B; Nasiri HR; Schwalbe H; Wöhnert J
    Nucleic Acids Res; 2007; 35(2):572-83. PubMed ID: 17175531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-dependent folding of the three-way junction in the purine riboswitch.
    Stoddard CD; Gilbert SD; Batey RT
    RNA; 2008 Apr; 14(4):675-84. PubMed ID: 18268025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riboswitch structure: an internal residue mimicking the purine ligand.
    Delfosse V; Bouchard P; Bonneau E; Dagenais P; Lemay JF; Lafontaine DA; Legault P
    Nucleic Acids Res; 2010 Apr; 38(6):2057-68. PubMed ID: 20022916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural studies of the purine and SAM binding riboswitches.
    Gilbert SD; Montange RK; Stoddard CD; Batey RT
    Cold Spring Harb Symp Quant Biol; 2006; 71():259-68. PubMed ID: 17381305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine.
    Batey RT; Gilbert SD; Montange RK
    Nature; 2004 Nov; 432(7015):411-5. PubMed ID: 15549109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand-induced folding of the guanine-sensing riboswitch is controlled by a combined predetermined induced fit mechanism.
    Ottink OM; Rampersad SM; Tessari M; Zaman GJ; Heus HA; Wijmenga SS
    RNA; 2007 Dec; 13(12):2202-12. PubMed ID: 17959930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of quaternary structure and enhancement of ligand binding by the K-turn of tandem glycine riboswitches.
    Baird NJ; Ferré-D'Amaré AR
    RNA; 2013 Feb; 19(2):167-76. PubMed ID: 23249744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain.
    Buck J; Noeske J; Wöhnert J; Schwalbe H
    Nucleic Acids Res; 2010 Jul; 38(12):4143-53. PubMed ID: 20200045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive ligand binding by the purine riboswitch in the recognition of guanine and adenine analogs.
    Gilbert SD; Reyes FE; Edwards AL; Batey RT
    Structure; 2009 Jun; 17(6):857-68. PubMed ID: 19523903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs.
    Serganov A; Yuan YR; Pikovskaya O; Polonskaia A; Malinina L; Phan AT; Hobartner C; Micura R; Breaker RR; Patel DJ
    Chem Biol; 2004 Dec; 11(12):1729-41. PubMed ID: 15610857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purine sensing by riboswitches.
    Kim JN; Breaker RR
    Biol Cell; 2008 Jan; 100(1):1-11. PubMed ID: 18072940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches.
    Sherman EM; Esquiaqui J; Elsayed G; Ye JD
    RNA; 2012 Mar; 18(3):496-507. PubMed ID: 22279151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine.
    Brenner MD; Scanlan MS; Nahas MK; Ha T; Silverman SK
    Biochemistry; 2010 Mar; 49(8):1596-605. PubMed ID: 20108980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-guided mutational analysis of gene regulation by the Bacillus subtilis pbuE adenine-responsive riboswitch in a cellular context.
    Marcano-Velázquez JG; Batey RT
    J Biol Chem; 2015 Feb; 290(7):4464-75. PubMed ID: 25550163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-dependent folding and unfolding of ligand-bound purine riboswitches.
    Prychyna O; Dahabieh MS; Chao J; O'Neill MA
    Biopolymers; 2009 Nov; 91(11):953-65. PubMed ID: 19603494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand recognition determinants of guanine riboswitches.
    Mulhbacher J; Lafontaine DA
    Nucleic Acids Res; 2007; 35(16):5568-80. PubMed ID: 17704135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A glycine-dependent riboswitch that uses cooperative binding to control gene expression.
    Mandal M; Lee M; Barrick JE; Weinberg Z; Emilsson GM; Ruzzo WL; Breaker RR
    Science; 2004 Oct; 306(5694):275-9. PubMed ID: 15472076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.