These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 17960911)
21. A structural basis for the recognition of 2'-deoxyguanosine by the purine riboswitch. Edwards AL; Batey RT J Mol Biol; 2009 Jan; 385(3):938-48. PubMed ID: 19007790 [TBL] [Abstract][Full Text] [Related]
22. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli. Drogalis LK; Batey RT PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551 [TBL] [Abstract][Full Text] [Related]
23. Guanine riboswitch variants from Mesoplasma florum selectively recognize 2'-deoxyguanosine. Kim JN; Roth A; Breaker RR Proc Natl Acad Sci U S A; 2007 Oct; 104(41):16092-7. PubMed ID: 17911257 [TBL] [Abstract][Full Text] [Related]
31. Molecular dynamics simulation study of the binding of purine bases to the aptamer domain of the guanine sensing riboswitch. Villa A; Wöhnert J; Stock G Nucleic Acids Res; 2009 Aug; 37(14):4774-86. PubMed ID: 19515936 [TBL] [Abstract][Full Text] [Related]
32. Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Buck J; Fürtig B; Noeske J; Wöhnert J; Schwalbe H Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15699-704. PubMed ID: 17895388 [TBL] [Abstract][Full Text] [Related]
33. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study. Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773 [TBL] [Abstract][Full Text] [Related]
34. Adenine riboswitches and gene activation by disruption of a transcription terminator. Mandal M; Breaker RR Nat Struct Mol Biol; 2004 Jan; 11(1):29-35. PubMed ID: 14718920 [TBL] [Abstract][Full Text] [Related]
35. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Klein DJ; Edwards TE; Ferré-D'Amaré AR Nat Struct Mol Biol; 2009 Mar; 16(3):343-4. PubMed ID: 19234468 [TBL] [Abstract][Full Text] [Related]
36. Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches. Matyjasik MM; Batey RT Nucleic Acids Res; 2019 Nov; 47(20):10931-10941. PubMed ID: 31598729 [TBL] [Abstract][Full Text] [Related]
37. Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Gilbert SD; Rambo RP; Van Tyne D; Batey RT Nat Struct Mol Biol; 2008 Feb; 15(2):177-82. PubMed ID: 18204466 [TBL] [Abstract][Full Text] [Related]
38. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Hu G; Li H; Xu S; Wang J Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940 [TBL] [Abstract][Full Text] [Related]
39. Evidence for pseudoknot formation of class I preQ1 riboswitch aptamers. Rieder U; Lang K; Kreutz C; Polacek N; Micura R Chembiochem; 2009 May; 10(7):1141-4. PubMed ID: 19382115 [TBL] [Abstract][Full Text] [Related]
40. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain. Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]