These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17960920)

  • 1. Incorporation of inhomogeneous ion diffusion coefficients into kinetic lattice grand canonical monte carlo simulations and application to ion current calculations in a simple model ion channel.
    Hwang H; Schatz GC; Ratner MA
    J Phys Chem A; 2007 Dec; 111(49):12506-12. PubMed ID: 17960920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic lattice grand canonical Monte Carlo simulation for ion current calculations in a model ion channel system.
    Hwang H; Schatz GC; Ratner MA
    J Chem Phys; 2007 Jul; 127(2):024706. PubMed ID: 17640144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acceleration of Monte Carlo simulations through spatial updating in the grand canonical ensemble.
    Orkoulas G
    J Chem Phys; 2007 Aug; 127(8):084106. PubMed ID: 17764228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accurate and efficient empirical approach for calculating the dielectric self-energy and ion-ion pair potential in continuum models of biological ion channels.
    Cheng MH; Coalson RD
    J Phys Chem B; 2005 Jan; 109(1):488-98. PubMed ID: 16851040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel.
    Kurnikova MG; Coalson RD; Graf P; Nitzan A
    Biophys J; 1999 Feb; 76(2):642-56. PubMed ID: 9929470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.
    Puibasset J
    J Phys Chem B; 2005 Apr; 109(16):8185-94. PubMed ID: 16851957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled ion and network dynamics in polymer electrolytes: Monte Carlo study of a lattice model.
    Dürr O; Dieterich W; Nitzan A
    J Chem Phys; 2004 Dec; 121(24):12732-9. PubMed ID: 15606299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte carlo simulations of micellization in model ionic surfactants: application to sodium dodecyl sulfate.
    Cheong DW; Panagiotopoulos AZ
    Langmuir; 2006 Apr; 22(9):4076-83. PubMed ID: 16618147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach.
    Zhou YC; Lu B; Huber GA; Holst MJ; McCammon JA
    J Phys Chem B; 2008 Jan; 112(2):270-5. PubMed ID: 18052268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 Jun; 122(23):234108. PubMed ID: 16008431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic Monte Carlo study of nucleation processes on patterned surfaces.
    Hopp SF; Heuer A
    J Chem Phys; 2010 Nov; 133(20):204101. PubMed ID: 21133435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PNP equations with steric effects: a model of ion flow through channels.
    Horng TL; Lin TC; Liu C; Eisenberg B
    J Phys Chem B; 2012 Sep; 116(37):11422-41. PubMed ID: 22900604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of proper energy barriers for atomistic kinetic Monte Carlo simulations on rigid lattice with chemical and strain field long-range effects using artificial neural networks.
    Castin N; Malerba L
    J Chem Phys; 2010 Feb; 132(7):074507. PubMed ID: 20170237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pair correlation functions and the self-diffusion coefficient of Lennard-Jones liquid in the modified free volume theory of diffusion.
    Laghaei R; Eskandari Nasrabad A; Eu BC
    J Phys Chem B; 2005 Nov; 109(45):21375-9. PubMed ID: 16853773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boltzmann bias grand canonical Monte Carlo.
    Garberoglio G
    J Chem Phys; 2008 Apr; 128(13):134109. PubMed ID: 18397055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of steady-state diffusion: driving force ensured by dual control volumes or local equilibrium Monte Carlo.
    Ható Z; Boda D; Kristóf T
    J Chem Phys; 2012 Aug; 137(5):054109. PubMed ID: 22894334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles.
    Whitelam S; Geissler PL
    J Chem Phys; 2007 Oct; 127(15):154101. PubMed ID: 17949126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoupling of the nernst-planck and poisson equations. Application to a membrane system at overlimiting currents.
    Urtenov MA; Kirillova EV; Seidova NM; Nikonenko VV
    J Phys Chem B; 2007 Dec; 111(51):14208-22. PubMed ID: 18052144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially adaptive lattice coarse-grained Monte Carlo simulations for diffusion of interacting molecules.
    Chatterjee A; Vlachos DG; Katsoulakis MA
    J Chem Phys; 2004 Dec; 121(22):11420-31. PubMed ID: 15634102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.