These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 17961485)

  • 1. Differences in the rhizosphere bacterial community of a transplastomic tobacco plant compared to its non-engineered counterpart.
    Brinkmann N; Tebbe CC
    Environ Biosafety Res; 2007; 6(1-2):113-9. PubMed ID: 17961485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic profiling of noncultivated bacteria from the rhizospheres of sugar beet (Beta vulgaris) reveal field and annual variability but no effect of a transgenic herbicide resistance.
    Schmalenberger A; Tebbe CC
    Can J Microbiol; 2003 Jan; 49(1):1-8. PubMed ID: 12674342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transgenic tobacco revealing altered bacterial diversity in the rhizosphere during early plant development.
    Andreote FD; Mendes R; Dini-Andreote F; Rossetto PB; Labate CA; Pizzirani-Kleiner AA; van Elsas JD; Azevedo JL; Araújo WL
    Antonie Van Leeuwenhoek; 2008 May; 93(4):415-24. PubMed ID: 18181027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes.
    Fracchia L; Dohrmann AB; Martinotti MG; Tebbe CC
    Appl Microbiol Biotechnol; 2006 Aug; 71(6):942-52. PubMed ID: 16395545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil.
    Lee SH; Ka JO; Cho JC
    FEMS Microbiol Lett; 2008 Aug; 285(2):263-9. PubMed ID: 18557943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of rhizodeposition of non-transgenic and transplastomic tobaccos on the soil bacterial community.
    Brusetti L; Rizzi A; Abruzzese A; Sacchi GA; Ragg E; Bazzicalupo M; Sorlini C; Daffonchio D
    Environ Biosafety Res; 2008; 7(1):11-24. PubMed ID: 18384726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field.
    Mohr KI; Tebbe CC
    Environ Microbiol; 2006 Feb; 8(2):258-72. PubMed ID: 16423014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results?
    Smalla K; Oros-Sichler M; Milling A; Heuer H; Baumgarte S; Becker R; Neuber G; Kropf S; Ulrich A; Tebbe CC
    J Microbiol Methods; 2007 Jun; 69(3):470-9. PubMed ID: 17407797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial diversity in the rhizosphere of Proteaceae species.
    Stafford WH; Baker GC; Brown SA; Burton SG; Cowan DA
    Environ Microbiol; 2005 Nov; 7(11):1755-68. PubMed ID: 16232290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and diversity of metabolically active gut bacteria from laboratory-bred larvae of Manduca sexta (Sphingidae, Lepidoptera, Insecta).
    Brinkmann N; Martens R; Tebbe CC
    Appl Environ Microbiol; 2008 Dec; 74(23):7189-96. PubMed ID: 18849461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of bacterial community structures in paddy soils for environmental risk assessment with two varieties of genetically modified rice, Iksan 483 and Milyang 204.
    Kim MC; Ahn JH; Shin HC; Kim T; Ryu TH; Kim DH; Song HG; Lee GH; Ka JO
    J Microbiol Biotechnol; 2008 Feb; 18(2):207-18. PubMed ID: 18309263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease.
    Kyselková M; Kopecký J; Frapolli M; Défago G; Ságová-Marecková M; Grundmann GL; Moënne-Loccoz Y
    ISME J; 2009 Oct; 3(10):1127-38. PubMed ID: 19554036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial and fungal communities in bulk soil and rhizospheres of aluminum-tolerant and aluminum-sensitive maize (Zea mays L.) lines cultivated in unlimed and limed Cerrado soil.
    Da Mota FF; Gomes EA; Marriel IE; Paiva E; Seldin L
    J Microbiol Biotechnol; 2008 May; 18(5):805-14. PubMed ID: 18633275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere.
    Baumgarte S; Tebbe CC
    Mol Ecol; 2005 Jul; 14(8):2539-51. PubMed ID: 15969733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of field inoculation with Sinorhizobium meliloti L33 on the composition of bacterial communities in rhizospheres of a target plant (Medicago sativa) and a non-target plant (Chenopodium album)-linking of 16S rRNA gene-based single-strand conformation polymorphism community profiles to the diversity of cultivated bacteria.
    Schwieger F; Tebbe CC
    Appl Environ Microbiol; 2000 Aug; 66(8):3556-65. PubMed ID: 10919821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of primers hybridizing to different evolutionarily conserved regions of the small-subunit rRNA gene in PCR-based microbial community analyses and genetic profiling.
    Schmalenberger A; Schwieger F; Tebbe CC
    Appl Environ Microbiol; 2001 Aug; 67(8):3557-63. PubMed ID: 11472932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore.
    Schmalenberger A; Tebbe CC
    FEMS Microbiol Ecol; 2002 Apr; 40(1):29-37. PubMed ID: 19709208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial and fungal communities in the rhizosphere of field-grown genetically modified pine trees (Pinus radiata D.).
    Lottmann J; O'Callaghan M; Baird D; Walter C
    Environ Biosafety Res; 2010; 9(1):25-40. PubMed ID: 21122484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary electrophoresis single-strand conformation polymorphism analysis for monitoring soil bacteria.
    King S; McCord BR; Riefler RG
    J Microbiol Methods; 2005 Jan; 60(1):83-92. PubMed ID: 15567228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct comparison of single-strand conformation polymorphism (SSCP) and denaturing gradient gel electrophoresis (DGGE) to characterize a microbial community on the basis of 16S rRNA gene fragments.
    Hori T; Haruta S; Ueno Y; Ishii M; Igarashi Y
    J Microbiol Methods; 2006 Jul; 66(1):165-9. PubMed ID: 16364477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.