These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 17961487)
1. An assessment of the potential of herbivorous insect gut bacteria to develop competence for natural transformation. Ray JL; Andersen HK; Young S; Nielsen KM; O'Callaghan M Environ Biosafety Res; 2007; 6(1-2):135-47. PubMed ID: 17961487 [TBL] [Abstract][Full Text] [Related]
2. Lack of detectable DNA uptake by bacterial gut isolates grown in vitro and by Acinetobacter baylyi colonizing rodents in vivo. Nordgård L; Nguyen T; Midtvedt T; Benno Y; Traavik T; Nielsen KM Environ Biosafety Res; 2007; 6(1-2):149-60. PubMed ID: 17961488 [TBL] [Abstract][Full Text] [Related]
3. Leaf-feeding larvae of Manduca sexta (Insecta, Lepidoptera) drastically reduce copy numbers of aadA antibiotic resistance genes from transplastomic tobacco but maintain intact aadA genes in their feces. Brinkmann N; Tebbe CC Environ Biosafety Res; 2007; 6(1-2):121-33. PubMed ID: 17961486 [TBL] [Abstract][Full Text] [Related]
4. Screening of rhizosphere and soil bacteria for transformability. Richter B; Smalla K Environ Biosafety Res; 2007; 6(1-2):91-9. PubMed ID: 17961483 [TBL] [Abstract][Full Text] [Related]
5. Autochthonous bacterial flora indicated by PCR-DGGE of 16S rRNA gene fragments from the alimentary tract of Costelytra zealandica (Coleoptera: Scarabaeidae). Zhang H; Jackson TA J Appl Microbiol; 2008 Nov; 105(5):1277-85. PubMed ID: 18713286 [TBL] [Abstract][Full Text] [Related]
6. Experimental methods for assaying natural transformation and inferring horizontal gene transfer. Ray JL; Nielsen KM Methods Enzymol; 2005; 395():491-520. PubMed ID: 15865981 [TBL] [Abstract][Full Text] [Related]
7. Conjugative transfer of plasmid-located antibiotic resistance genes within the gastrointestinal tract of lesser mealworm larvae, Alphitobius diaperinus (Coleoptera: Tenebrionidae). Crippen TL; Poole TL Foodborne Pathog Dis; 2009 Sep; 6(7):907-15. PubMed ID: 19425825 [TBL] [Abstract][Full Text] [Related]
8. Pathobiology of amber disease, caused by Serratia Spp., in the New Zealand grass grub, Costelytra zealandica. Jackson TA; Boucias DG; Thaler JO J Invertebr Pathol; 2001 Nov; 78(4):232-43. PubMed ID: 12009805 [TBL] [Abstract][Full Text] [Related]
9. Transformation of Acinetobacter sp. BD413 with DNA from commercially available genetically modified potato and papaya. Iwaki M; Arakawa Y Lett Appl Microbiol; 2006 Aug; 43(2):215-21. PubMed ID: 16869908 [TBL] [Abstract][Full Text] [Related]
10. Phenotypic changes and the fate of digestive enzymes during induction of amber disease in larvae of the New Zealand grass grub (Costelytra zealandica). Gatehouse HS; Tan B; Christeller JT; Hurst MR; Marshall SD; Jackson TA J Invertebr Pathol; 2009 Jul; 101(3):215-21. PubMed ID: 19465026 [TBL] [Abstract][Full Text] [Related]
11. Transformation of Acinetobacter baylyi in non-sterile soil using recombinant plant nuclear DNA. Simpson DJ; Fry JC; Rogers HJ; Day MJ Environ Biosafety Res; 2007; 6(1-2):101-12. PubMed ID: 17961484 [TBL] [Abstract][Full Text] [Related]
12. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Raymond B; Johnston PR; Wright DJ; Ellis RJ; Crickmore N; Bonsall MB Environ Microbiol; 2009 Oct; 11(10):2556-63. PubMed ID: 19555371 [TBL] [Abstract][Full Text] [Related]
13. Serratia proteamaculans Strain AGR96X Encodes an Antifeeding Prophage (Tailocin) with Activity against Grass Grub (Costelytra giveni) and Manuka Beetle (Pyronota Species) Larvae. Hurst MRH; Beattie A; Jones SA; Laugraud A; van Koten C; Harper L Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549100 [TBL] [Abstract][Full Text] [Related]
14. Quantification and kinetics of the decline in grass grub endopeptidase activity during initiation of amber disease. Jackson TA; Christeller JT; McHenry JZ; Laing WA J Invertebr Pathol; 2004 Jul; 86(3):72-6. PubMed ID: 15261770 [TBL] [Abstract][Full Text] [Related]
15. A double kill gene cassette for the positive selection of transforming non-selective DNA segments in Acinetobacter baylyi BD413. Harms K; de Vries J; Wackernagel W J Microbiol Methods; 2007 Apr; 69(1):107-15. PubMed ID: 17250911 [TBL] [Abstract][Full Text] [Related]
16. Factors affecting quantitative transformation of streptomycin resistance markers in Acinetobacter calcoaceticus. Bergan T; Vaksvik AK Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1983 Apr; 254(2):197-213. PubMed ID: 6586036 [TBL] [Abstract][Full Text] [Related]
17. Detection of potential transgenic plant DNA recipients among soil bacteria. Monier JM; Bernillon D; Kay E; Faugier A; Rybalka O; Dessaux Y; Simonet P; Vogel TM Environ Biosafety Res; 2007; 6(1-2):71-83. PubMed ID: 17961481 [TBL] [Abstract][Full Text] [Related]
18. Effects of rhizodeposition of non-transgenic and transplastomic tobaccos on the soil bacterial community. Brusetti L; Rizzi A; Abruzzese A; Sacchi GA; Ragg E; Bazzicalupo M; Sorlini C; Daffonchio D Environ Biosafety Res; 2008; 7(1):11-24. PubMed ID: 18384726 [TBL] [Abstract][Full Text] [Related]
19. The RecJ DNase strongly suppresses genomic integration of short but not long foreign DNA fragments by homology-facilitated illegitimate recombination during transformation of Acinetobacter baylyi. Harms K; Schön V; Kickstein E; Wackernagel W Mol Microbiol; 2007 May; 64(3):691-702. PubMed ID: 17462017 [TBL] [Abstract][Full Text] [Related]
20. Taxonomic implications of quantitative transformation in Acinetobacter calcoaceticus. Bergan T; Vaksvik AK Zentralbl Bakteriol Mikrobiol Hyg A Med Mikrobiol Infekt Parasitol; 1983 Apr; 254(2):214-28. PubMed ID: 6586037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]