These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 17961781)

  • 1. Functionality improvement of fungal lignin peroxidase by DNA shuffling for 2,4-dichlorophenol degradability and H2O2 stability.
    Ryu K; Hwang SY; Kim KH; Kang JH; Lee EK
    J Biotechnol; 2008 Jan; 133(1):110-5. PubMed ID: 17961781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression in yeast of secreted lignin peroxidase with improved 2,4-dichlorophenol degradability by DNA shuffling.
    Ryu K; Kang JH; Wang L; Lee EK
    J Biotechnol; 2008 Jun; 135(3):241-6. PubMed ID: 18514942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of hydrogen peroxide stability of Pleurotus eryngii versatile ligninolytic peroxidase by rational protein engineering.
    Bao X; Huang X; Lu X; Li JJ
    Enzyme Microb Technol; 2014 Jan; 54():51-8. PubMed ID: 24267568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High efficient degradation of dyes with lignin peroxidase coupled with glucose oxidase.
    Lan J; Huang X; Hu M; Li Y; Qu Y; Gao P; Wu D
    J Biotechnol; 2006 Jun; 123(4):483-90. PubMed ID: 16698106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of the activity and alkaline pH stability of Thermobifida fusca xylanase A by directed evolution.
    Wang Q; Xia T
    Biotechnol Lett; 2008 May; 30(5):937-44. PubMed ID: 18292971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-directed mutagenesis of the catalytic tryptophan environment in Pleurotus eryngii versatile peroxidase.
    Ruiz-Dueñas FJ; Morales M; Mate MJ; Romero A; Martínez MJ; Smith AT; Martínez AT
    Biochemistry; 2008 Feb; 47(6):1685-95. PubMed ID: 18201105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of N-carbamyl-D-amino acid amidohydrolase for simultaneous improvement of oxidative and thermal stability.
    Oh KH; Nam SH; Kim HS
    Biotechnol Prog; 2002; 18(3):413-7. PubMed ID: 12052052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of chlorophenols by Phanerochaete chrysosporium: effect of 3,4-dichlorophenol on extracellular peroxidase activities.
    Duran R; Deschler C; Precigou S; Goulas P
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):284-8. PubMed ID: 12111159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Directed evolution of D-lactonohydrolase by error prone PCR and DNA shuffling].
    Liu ZQ; Sun ZH; Zheng P; Leng Y; Qian JN
    Sheng Wu Gong Cheng Xue Bao; 2005 Sep; 21(5):773-81. PubMed ID: 16285520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of hydrogen peroxide stability of a novel Anabaena sp. DyP-type peroxidase by site-directed mutagenesis of methionine residues.
    Ogola HJ; Hashimoto N; Miyabe S; Ashida H; Ishikawa T; Shibata H; Sawa Y
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1727-36. PubMed ID: 20422179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of a fungal peroxidase.
    Cherry JR; Lamsa MH; Schneider P; Vind J; Svendsen A; Jones A; Pedersen AH
    Nat Biotechnol; 1999 Apr; 17(4):379-84. PubMed ID: 10207888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for oxidizing nitrobenzene to 3-nitrocatechol, 4-nitrocatechol, and nitrohydroquinone.
    Vardar G; Ryu K; Wood TK
    J Biotechnol; 2005 Jan; 115(2):145-56. PubMed ID: 15607233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel methods of genome shuffling in Saccharomyces cerevisiae.
    Hou L
    Biotechnol Lett; 2009 May; 31(5):671-7. PubMed ID: 19153667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directed evolution of a temperature-, peroxide- and alkaline pH-tolerant versatile peroxidase.
    Garcia-Ruiz E; Gonzalez-Perez D; Ruiz-Dueñas FJ; Martínez AT; Alcalde M
    Biochem J; 2012 Jan; 441(1):487-98. PubMed ID: 21980920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A shuffled CYP2C library with a high degree of structural integrity and functional versatility.
    Huang W; Johnston WA; Hayes MA; De Voss JJ; Gillam EM
    Arch Biochem Biophys; 2007 Nov; 467(2):193-205. PubMed ID: 17904094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving the oxidative stability of a high redox potential fungal peroxidase by rational design.
    Sáez-Jiménez V; Acebes S; Guallar V; Martínez AT; Ruiz-Dueñas FJ
    PLoS One; 2015; 10(4):e0124750. PubMed ID: 25923713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin peroxidase from Streptomyces viridosporus T7A: enzyme concentration using ultrafiltration.
    Gottschalk LM; Bon EP; Nobrega R
    Appl Biochem Biotechnol; 2008 Mar; 147(1-3):23-32. PubMed ID: 18351297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2,4-Dichlorophenol degradation using Streptomyces viridosporus T7A lignin peroxidase.
    Yee DC; Wood TK
    Biotechnol Prog; 1997; 13(1):53-9. PubMed ID: 9041710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of chlorophenols catalyzed by Coprinus cinereus peroxidase with in situ production of hydrogen peroxide.
    Pezzotti F; Okrasa K; Therisod M
    Biotechnol Prog; 2004; 20(6):1868-71. PubMed ID: 15575724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of single mutations on the stability of horseradish peroxidase to hydrogen peroxide.
    Ryan BJ; O'Fágáin C
    Biochimie; 2007 Aug; 89(8):1029-32. PubMed ID: 17482746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.