These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17962574)

  • 1. Acoustic plethysmography measures breathing in unrestrained neonatal mice.
    Daubenspeck JA; Li A; Nattie EE
    J Appl Physiol (1985); 2008 Jan; 104(1):262-8. PubMed ID: 17962574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unrestrained video-assisted plethysmography: a noninvasive method for assessment of lung mechanical function in small animals.
    Bates JH; Thompson-Figueroa J; Lundblad LK; Irvin CG
    J Appl Physiol (1985); 2008 Jan; 104(1):253-61. PubMed ID: 17962577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel method for conscious airway resistance and ventilation estimation in neonatal rodents using plethysmography and a mechanical lung.
    Zhang B; McDonald FB; Cummings KJ; Frappell PB; Wilson RJ
    Respir Physiol Neurobiol; 2014 Sep; 201():75-83. PubMed ID: 25017785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unrestrained acoustic plethysmograph for measuring specific airway resistance in mice.
    Reynolds JS; Johnson VJ; Frazer DG
    J Appl Physiol (1985); 2008 Aug; 105(2):711-7. PubMed ID: 18450981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unrestrained acoustic plethysmograph for measuring tidal volume in mice.
    Reynolds JS; Frazer DG
    Ann Biomed Eng; 2006 Sep; 34(9):1494-9. PubMed ID: 16897419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A reevaluation of the validity of unrestrained plethysmography in mice.
    Lundblad LK; Irvin CG; Adler A; Bates JH
    J Appl Physiol (1985); 2002 Oct; 93(4):1198-207. PubMed ID: 12235015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Computer-assisted calibration of inductive plethysmography].
    Tomalak W; Willim G; Kapustianyk I; Hałuszka J
    Pneumonol Alergol Pol; 1991; 59(5-6):181-6. PubMed ID: 1843919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The measurement of respiratory variables in the guinea-pig using an oesophageal balloon and body plethysmograph [proceedings].
    Hassall PA; Sweatman WJ
    J Physiol; 1979 Feb; 287():9P. PubMed ID: 430439
    [No Abstract]   [Full Text] [Related]  

  • 9. Assessment of respiratory physiology of C57BL/6 mice following bleomycin administration using barometric plethysmography.
    Milton PL; Dickinson H; Jenkin G; Lim R
    Respiration; 2012; 83(3):253-66. PubMed ID: 21997573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring lung function in mice: the phenotyping uncertainty principle.
    Bates JH; Irvin CG
    J Appl Physiol (1985); 2003 Apr; 94(4):1297-306. PubMed ID: 12626466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulmonary function assessment by whole-body plethysmography in restrained versus unrestrained mice.
    DeLorme MP; Moss OR
    J Pharmacol Toxicol Methods; 2002; 47(1):1-10. PubMed ID: 12387933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Examination of tidal volume and ventilation in infants in the first six months of life by means of whole-body plethysmograph (author's transl)].
    Michalicková J; Soltés L; Jakubík J
    Bratisl Lek Listy; 1979 Feb; 71(2):129-36. PubMed ID: 427607
    [No Abstract]   [Full Text] [Related]  

  • 13. Non-invasive whole-body plethysmograph for assessment and prediction of radiation-induced lung injury using simultaneously acquired nitric oxide and lung volume measurements.
    Coates J; Ybarra N; El Naqa I
    Physiol Meas; 2014 Sep; 35(9):1737-50. PubMed ID: 25119582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear model for estimating respiratory volume based on thoracoabdominal breathing movements.
    Raoufy MR; Hajizadeh S; Gharibzadeh S; Mani AR; Eftekhari P; Masjedi MR
    Respirology; 2013 Jan; 18(1):108-16. PubMed ID: 22897148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory monitoring by inductive plethysmography in unrestrained subjects using position sensor-adjusted calibration.
    Brüllmann G; Fritsch K; Thurnheer R; Bloch KE
    Respiration; 2010; 79(2):112-20. PubMed ID: 19365103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of tidal volume during high frequency ventilation by impedance plethysmography.
    Sandberg KL; Lindstrom DP; Krueger ED; Sundell H; Cotton RB
    Pediatr Res; 1988 Mar; 23(3):253-6. PubMed ID: 3353169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural control of breathing: insights from genetic mouse models.
    Gaultier C; Gallego J
    J Appl Physiol (1985); 2008 May; 104(5):1522-30. PubMed ID: 18218910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the barometric method for measurements of ventilation, and its use in small animals.
    Mortola JP; Frappell PB
    Can J Physiol Pharmacol; 1998; 76(10-11):937-44. PubMed ID: 10100874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do new anesthesia ventilators deliver small tidal volumes accurately during volume-controlled ventilation?
    Bachiller PR; McDonough JM; Feldman JM
    Anesth Analg; 2008 May; 106(5):1392-400, table of contents. PubMed ID: 18420850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of an infant whole-body plethysmograph using an infant lung function model.
    Reinmann B; Stocks J; Frey U
    Eur Respir J; 2001 Apr; 17(4):765-72. PubMed ID: 11401075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.