BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17962578)

  • 1. Laryngeal apnea in rat pups: effects of age and body temperature.
    Xia L; Leiter JC; Bartlett D
    J Appl Physiol (1985); 2008 Jan; 104(1):269-74. PubMed ID: 17962578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated body temperature enhances the laryngeal chemoreflex in decerebrate piglets.
    Curran AK; Xia L; Leiter JC; Bartlett D
    J Appl Physiol (1985); 2005 Mar; 98(3):780-6. PubMed ID: 15542573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unilateral microdialysis of gabazine in the dorsal medulla reverses thermal prolongation of the laryngeal chemoreflex in decerebrate piglets.
    Xia L; Damon T; Niblock MM; Bartlett D; Leiter JC
    J Appl Physiol (1985); 2007 Nov; 103(5):1864-72. PubMed ID: 17823299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatal apnea in piglets by way of laryngeal chemoreflex: postmortem findings as anatomic correlates of sudden infant death syndrome in the human infant.
    Richardson MA; Adams J
    Laryngoscope; 2005 Jul; 115(7):1163-9. PubMed ID: 15995501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GABAergic processes mediate thermal prolongation of the laryngeal reflex apnea in decerebrate piglets.
    Böhm I; Xia L; Leiter JC; Bartlett D
    Respir Physiol Neurobiol; 2007 May; 156(2):229-33. PubMed ID: 17137847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laryngeal water receptors are insensitive to body temperature in neonatal piglets.
    Xia L; Leiter JC; Bartlett D
    Respir Physiol Neurobiol; 2006 Jan; 150(1):82-6. PubMed ID: 15993656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated body temperature exaggerates laryngeal chemoreflex apnea in decerebrate piglets.
    Xia L; Damon T; Leiter JC; Bartlett D
    Adv Exp Med Biol; 2008; 605():249-54. PubMed ID: 18085281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gestational cigarette smoke exposure and hyperthermic enhancement of laryngeal chemoreflex in rat pups.
    Xia L; Crane-Godreau M; Leiter JC; Bartlett D
    Respir Physiol Neurobiol; 2009 Feb; 165(2-3):161-6. PubMed ID: 19041957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gestational nicotine exposure exaggerates hyperthermic enhancement of laryngeal chemoreflex in rat pups.
    Xia L; Leiter JC; Bartlett D
    Respir Physiol Neurobiol; 2010 Apr; 171(1):17-21. PubMed ID: 20097312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prenatal intermittent hypoxia sensitizes the laryngeal chemoreflex, blocks serotoninergic shortening of the reflex, and reduces 5-HT
    Donnelly WT; Haynes RL; Commons KG; Erickson DJ; Panzini CM; Xia L; Han QJ; Leiter JC
    Exp Neurol; 2020 Apr; 326():113166. PubMed ID: 31887303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonin in the solitary tract nucleus shortens the laryngeal chemoreflex in anaesthetized neonatal rats.
    Donnelly WT; Bartlett D; Leiter JC
    Exp Physiol; 2016 Jul; 101(7):946-61. PubMed ID: 27121960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interleukin-1β and interleukin-6 enhance thermal prolongation of the LCR in decerebrate piglets.
    Xia L; Bartlett D; Leiter JC
    Respir Physiol Neurobiol; 2016 Aug; 230():44-53. PubMed ID: 27181326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prolonged hypoxemia enhances and acute hypoxemia attenuates laryngeal reflex apnea in young lambs.
    Sladek M; Grogaard JB; Parker RA; Sundell HW
    Pediatr Res; 1993 Dec; 34(6):813-20. PubMed ID: 8108200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focal warming in the nucleus of the solitary tract prolongs the laryngeal chemoreflex in decerebrate piglets.
    Xia L; Damon TA; Leiter JC; Bartlett D
    J Appl Physiol (1985); 2007 Jan; 102(1):54-62. PubMed ID: 16959905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of central adenosine A(2A) receptors enhances superior laryngeal nerve stimulation-induced apnea in piglets via a GABAergic pathway.
    Abu-Shaweesh JM
    J Appl Physiol (1985); 2007 Oct; 103(4):1205-11. PubMed ID: 17656623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intralaryngeal carbon dioxide and acetazolamide on the laryngeal chemoreflex.
    Heman-Ackah YD; Goding GS
    Ann Otol Rhinol Laryngol; 2000 Oct; 109(10 Pt 1):921-8. PubMed ID: 11051432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic agents in the laryngeal chemoreflex model of sudden infant death syndrome.
    Rimell F; Goding GS; Johnson K
    Laryngoscope; 1993 Jun; 103(6):623-30. PubMed ID: 8502096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex-Specific Consequences of Neonatal Stress on Cardio-Respiratory Inhibition Following Laryngeal Stimulation in Rat Pups.
    Baldy C; Chamberland S; Fournier S; Kinkead R
    eNeuro; 2017; 4(6):. PubMed ID: 29308430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of serotonergic neurons in the medullary caudal raphe shortens the laryngeal chemoreflex in anaesthetized neonatal rats.
    Donnelly WT; Xia L; Bartlett D; Leiter JC
    Exp Physiol; 2017 Aug; 102(8):1007-1018. PubMed ID: 28675564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of postnatal smoke exposure on laryngeal chemoreflexes in newborn lambs.
    St-Hilaire M; Duvareille C; Avoine O; Carreau AM; Samson N; Micheau P; Doueik A; Praud JP
    J Appl Physiol (1985); 2010 Dec; 109(6):1820-6. PubMed ID: 20864563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.