These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17962594)

  • 1. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats.
    Lee JM; Zhai G; Liu Q; Gonzales ER; Yin K; Yan P; Hsu CY; Vo KD; Lin W
    Stroke; 2007 Dec; 38(12):3289-91. PubMed ID: 17962594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility weighted MRI pinpoints spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats.
    Shen Y; Zheng W; Hu J; Nichol H; Haacke EM
    Magn Reson Imaging; 2022 Nov; 93():135-144. PubMed ID: 35973572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of glucose transporter-1 and aquaporin-4 in the cerebral cortex of stroke-prone spontaneously hypertensive rats in relation to the blood-brain barrier function.
    Ishida H; Takemori K; Dote K; Ito H
    Am J Hypertens; 2006 Jan; 19(1):33-9. PubMed ID: 16461188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma Kallikrein Contributes to Intracerebral Hemorrhage and Hypertension in Stroke-Prone Spontaneously Hypertensive Rats.
    Guan J; Clermont AC; Pham LD; Ustunkaya T; Revenko AS; MacLeod AR; Feener EP; Simão F
    Transl Stroke Res; 2022 Apr; 13(2):287-299. PubMed ID: 34241810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mineralocorticoid receptors/epithelial Na(+) channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats.
    Nakano M; Hirooka Y; Matsukawa R; Ito K; Sunagawa K
    Hypertens Res; 2013 Mar; 36(3):277-84. PubMed ID: 23096235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blood-brain barrier is impaired in the hippocampus of young adult spontaneously hypertensive rats.
    Ueno M; Sakamoto H; Tomimoto H; Akiguchi I; Onodera M; Huang CL; Kanenishi K
    Acta Neuropathol; 2004 Jun; 107(6):532-8. PubMed ID: 15042385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone marrow mesenchymal stem cells ameliorate neurological deficits and blood-brain barrier dysfunction after intracerebral hemorrhage in spontaneously hypertensive rats.
    Wang C; Fei Y; Xu C; Zhao Y; Pan Y
    Int J Clin Exp Pathol; 2015; 8(5):4715-24. PubMed ID: 26191161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible involvement of oxidative stress as a causative factor in blood-brain barrier dysfunction in stroke-prone spontaneously hypertensive rats.
    Takemori K; Murakami T; Kometani T; Ito H
    Microvasc Res; 2013 Nov; 90():169-72. PubMed ID: 23978333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation.
    Yamamoto E; Tamamaki N; Nakamura T; Kataoka K; Tokutomi Y; Dong YF; Fukuda M; Matsuba S; Ogawa H; Kim-Mitsuyama S
    Stroke; 2008 Nov; 39(11):3049-56. PubMed ID: 18688015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into brain damage in stroke-prone rats: a nuclear magnetic imaging study.
    Guerrini U; Sironi L; Tremoli E; Cimino M; Pollo B; Calvio AM; Paoletti R; Asdente M
    Stroke; 2002 Mar; 33(3):825-30. PubMed ID: 11872910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High potassium diets reduce endothelial permeability in stroke-prone spontaneously hypertensive rats.
    Ishimitsu T; Tobian L
    Clin Exp Pharmacol Physiol; 1996 Mar; 23(3):241-5. PubMed ID: 8934615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spironolactone improves structure and increases tone in the cerebral vasculature of male spontaneously hypertensive stroke-prone rats.
    Rigsby CS; Pollock DM; Dorrance AM
    Microvasc Res; 2007 May; 73(3):198-205. PubMed ID: 17250855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the spontaneously hypertensive stroke prone rat a pertinent model of sub cortical ischemic stroke? A systematic review.
    Bailey EL; Smith C; Sudlow CL; Wardlaw JM
    Int J Stroke; 2011 Oct; 6(5):434-44. PubMed ID: 21951409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonism of endothelin action normalizes altered levels of VEGF and its signaling in the brain of stroke-prone spontaneously hypertensive rat.
    Jesmin S; Maeda S; Mowa CN; Zaedi S; Togashi H; Prodhan SH; Yamaguchi T; Yoshioka M; Sakuma I; Miyauchi T; Kato N
    Eur J Pharmacol; 2007 Nov; 574(2-3):158-71. PubMed ID: 17689527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The expression of matrix metalloproteinase-13 is increased in vessels with blood-brain barrier impairment in a stroke-prone hypertensive model.
    Ueno M; Wu B; Nishiyama A; Huang CL; Hosomi N; Kusaka T; Nakagawa T; Onodera M; Kido M; Sakamoto H
    Hypertens Res; 2009 May; 32(5):332-8. PubMed ID: 19300451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathological alterations of astrocytes in stroke-prone spontaneously hypertensive rats under ischemic conditions.
    Yamagata K
    Neurochem Int; 2012 Jan; 60(1):91-8. PubMed ID: 22100568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Na+/K+-ATPase alpha isoforms expression in stroke-prone spontaneously hypertensive rat heart ventricles: effect of salt loading and lacidipine treatment.
    Quintas LE; Noël F; Wibo M
    Eur J Pharmacol; 2007 Jun; 565(1-3):151-7. PubMed ID: 17451677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient forebrain ischemia increases the blood-brain barrier permeability for albumin in stroke-prone spontaneously hypertensive rats.
    Abrahám CS; Harada N; Deli MA; Niwa M
    Cell Mol Neurobiol; 2002 Aug; 22(4):455-62. PubMed ID: 12507394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevention of stroke and preservation of the functions of cerebral arteries by treatment with perindopril in stroke-prone spontaneously hypertensive rats.
    Wang H; Smeda JS; Lee RM
    Can J Physiol Pharmacol; 1998 Jan; 76(1):26-34. PubMed ID: 9564546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats.
    Kishi T; Hirooka Y; Kimura Y; Ito K; Shimokawa H; Takeshita A
    Circulation; 2004 May; 109(19):2357-62. PubMed ID: 15117836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.