These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Reduced angiotensin II levels cause generalized vascular dysfunction via oxidant stress in hamster cheek pouch arterioles. Priestley JR; Buelow MW; McEwen ST; Weinberg BD; Delaney M; Balus SF; Hoeppner C; Dondlinger L; Lombard JH Microvasc Res; 2013 Sep; 89():134-45. PubMed ID: 23628292 [TBL] [Abstract][Full Text] [Related]
46. Impaired coronary collateral growth in the metabolic syndrome is in part mediated by matrix metalloproteinase 12-dependent production of endostatin and angiostatin. Dodd T; Wiggins L; Hutcheson R; Smith E; Musiyenko A; Hysell B; Russell JC; Rocic P Arterioscler Thromb Vasc Biol; 2013 Jun; 33(6):1339-49. PubMed ID: 23599440 [TBL] [Abstract][Full Text] [Related]
47. Low-dose angiotensin II infusion restores vascular function in cerebral arteries of high salt-fed rats by increasing copper/zinc superoxide dimutase expression. Durand MJ; Lombard JH Am J Hypertens; 2013 Jun; 26(6):739-47. PubMed ID: 23443725 [TBL] [Abstract][Full Text] [Related]
48. MicroRNA-145 restores contractile vascular smooth muscle phenotype and coronary collateral growth in the metabolic syndrome. Hutcheson R; Terry R; Chaplin J; Smith E; Musiyenko A; Russell JC; Lincoln T; Rocic P Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):727-36. PubMed ID: 23393394 [TBL] [Abstract][Full Text] [Related]
49. The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: the great exploration. Hutcheson R; Rocic P Exp Diabetes Res; 2012; 2012():271028. PubMed ID: 22829804 [TBL] [Abstract][Full Text] [Related]
50. Why is coronary collateral growth impaired in type II diabetes and the metabolic syndrome? Rocic P Vascul Pharmacol; 2012; 57(5-6):179-86. PubMed ID: 22342811 [TBL] [Abstract][Full Text] [Related]
51. Coronary collateral growth--back to the future. Chilian WM; Penn MS; Pung YF; Dong F; Mayorga M; Ohanyan V; Logan S; Yin L J Mol Cell Cardiol; 2012 Apr; 52(4):905-11. PubMed ID: 22210280 [TBL] [Abstract][Full Text] [Related]
52. Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Amanso AM; Griendling KK Front Biosci (Schol Ed); 2012 Jan; 4(3):1044-64. PubMed ID: 22202108 [TBL] [Abstract][Full Text] [Related]
53. MMPs 2 and 9 are essential for coronary collateral growth and are prominently regulated by p38 MAPK. Dodd T; Jadhav R; Wiggins L; Stewart J; Smith E; Russell JC; Rocic P J Mol Cell Cardiol; 2011 Dec; 51(6):1015-25. PubMed ID: 21884701 [TBL] [Abstract][Full Text] [Related]
54. Overexpression of catalase in myeloid cells causes impaired postischemic neovascularization. Hodara R; Weiss D; Joseph G; Velasquez-Castano JC; Landázuri N; Han JW; Yoon YS; Taylor WR Arterioscler Thromb Vasc Biol; 2011 Oct; 31(10):2203-9. PubMed ID: 21799178 [TBL] [Abstract][Full Text] [Related]
55. Angiotensin type I receptor blockade in conjunction with enhanced Akt activation restores coronary collateral growth in the metabolic syndrome. Jadhav R; Dodd T; Smith E; Bailey E; Delucia AL; Russell JC; Madison R; Potter B; Walsh K; Jo H; Rocic P Am J Physiol Heart Circ Physiol; 2011 May; 300(5):H1938-49. PubMed ID: 21335466 [TBL] [Abstract][Full Text] [Related]
56. Corruption of coronary collateral growth in metabolic syndrome: Role of oxidative stress. Pung YF; Chilian WM World J Cardiol; 2010 Dec; 2(12):421-7. PubMed ID: 21191543 [TBL] [Abstract][Full Text] [Related]
57. Impaired relaxation of cerebral arteries in the absence of elevated salt intake in normotensive congenic rats carrying the Dahl salt-sensitive renin gene. Durand MJ; Moreno C; Greene AS; Lombard JH Am J Physiol Heart Circ Physiol; 2010 Dec; 299(6):H1865-74. PubMed ID: 20852041 [TBL] [Abstract][Full Text] [Related]