These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 17963390)

  • 21. Rolling circle amplification shows a sinusoidal template length-dependent amplification bias.
    Joffroy B; Uca YO; Prešern D; Doye JPK; Schmidt TL
    Nucleic Acids Res; 2018 Jan; 46(2):538-545. PubMed ID: 29237070
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimation of DNA polymerase for improvement of rolling circle amplification.
    Yoshimura T; Arikado S; Ohuchi S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):303-4. PubMed ID: 17150938
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal DNA templates for rolling circle amplification revealed by in vitro selection.
    Mao Y; Liu M; Tram K; Gu J; Salena BJ; Jiang Y; Li Y
    Chemistry; 2015 May; 21(22):8069-74. PubMed ID: 25877998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine.
    Ali MM; Li F; Zhang Z; Zhang K; Kang DK; Ankrum JA; Le XC; Zhao W
    Chem Soc Rev; 2014 May; 43(10):3324-41. PubMed ID: 24643375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology.
    Chandrasekaran AR; Rusling DA
    Nucleic Acids Res; 2018 Feb; 46(3):1021-1037. PubMed ID: 29228337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro evolution of phi29 DNA polymerases through compartmentalized gene expression and rolling-circle replication.
    Sakatani Y; Mizuuchi R; Ichihashi N
    Protein Eng Des Sel; 2019 Dec; 32(11):481-487. PubMed ID: 32533140
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A transcription and translation-coupled DNA replication system using rolling-circle replication.
    Sakatani Y; Ichihashi N; Kazuta Y; Yomo T
    Sci Rep; 2015 May; 5():10404. PubMed ID: 26013404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent advances in biological detection with rolling circle amplification: design strategy, biosensing mechanism, and practical applications.
    Gao YP; Huang KJ; Wang FT; Hou YY; Xu J; Li G
    Analyst; 2022 Jul; 147(15):3396-3414. PubMed ID: 35748818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct evidence for Holliday junction crossover isomerization.
    Li X; Wang H; Seeman NC
    Biochemistry; 1997 Apr; 36(14):4240-7. PubMed ID: 9100019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembled DNA nanostructures prepared by rolling circle amplification for the delivery of siRNA conjugates.
    Hong CA; Jang B; Jeong EH; Jeong H; Lee H
    Chem Commun (Camb); 2014 Nov; 50(86):13049-51. PubMed ID: 24967959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DNA Block Macromolecules Based on Rolling Circle Amplification Act as Scaffolds to Build Large-Scale Origami Nanostructures.
    Zhang Z; Zhang H; Wang F; Zhang G; Zhou T; Wang X; Liu S; Liu T
    Macromol Rapid Commun; 2018 Aug; 39(15):e1800263. PubMed ID: 29952041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rolling-circle amplification in DNA diagnostics: the power of simplicity.
    Demidov VV
    Expert Rev Mol Diagn; 2002 Nov; 2(6):542-8. PubMed ID: 12465451
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in rolling circle amplification-based biosensing strategies-A review.
    Xu L; Duan J; Chen J; Ding S; Cheng W
    Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rolling circle replication for engineering drug delivery carriers.
    Sun W; Lu Y; Gu Z
    Ther Deliv; 2015 Jul; 6(7):765-8. PubMed ID: 26228768
    [No Abstract]   [Full Text] [Related]  

  • 35. Target-catalyzed hairpin structure-mediated padlock cyclization for ultrasensitive rolling circle amplification.
    Song H; Yang Z; Jiang M; Zhang G; Gao Y; Shen Z; Wu ZS; Lou Y
    Talanta; 2019 Nov; 204():29-35. PubMed ID: 31357296
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of DNA-based drug delivery nanocarriers with rolling circle amplification.
    Ouyang X; Li J; Liu H; Zhao B; Yan J; He D; Fan C; Chao J
    Methods; 2014 May; 67(2):198-204. PubMed ID: 23747336
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA double-crossover molecules.
    Fu TJ; Seeman NC
    Biochemistry; 1993 Apr; 32(13):3211-20. PubMed ID: 8461289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rolling circle amplification (RCA)-based DNA hydrogel.
    Yao C; Zhang R; Tang J; Yang D
    Nat Protoc; 2021 Dec; 16(12):5460-5483. PubMed ID: 34716450
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual functional Phi29 DNA polymerase-triggered exponential rolling circle amplification for sequence-specific detection of target DNA embedded in long-stranded genomic DNA.
    Li XY; Du YC; Zhang YP; Kong DM
    Sci Rep; 2017 Jul; 7(1):6263. PubMed ID: 28740223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensitive detection of proteins using assembled cascade fluorescent DNA nanotags based on rolling circle amplification.
    Xue Q; Wang Z; Wang L; Jiang W
    Bioconjug Chem; 2012 Apr; 23(4):734-9. PubMed ID: 22384977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.