BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 17963529)

  • 21. SVM-based spectral matching for metabolite identification.
    Zhou B; Cheema AK; Ressom HW
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():756-9. PubMed ID: 21095903
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved model-based, platform-independent feature extraction for mass spectrometry.
    Noy K; Fasulo D
    Bioinformatics; 2007 Oct; 23(19):2528-35. PubMed ID: 17698491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GaborLocal: peak detection in mass spectrum by Gabor filters and Gaussian local maxima.
    Nguyen N; Huang H; Oraintara S; Vo A
    Comput Syst Bioinformatics Conf; 2008; 7():85-96. PubMed ID: 19642271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance evaluation of non-targeted peak-based cross-sample analysis for comprehensive two-dimensional gas chromatography-mass spectrometry data and application to processed hazelnut profiling.
    Kiefl J; Cordero C; Nicolotti L; Schieberle P; Reichenbach SE; Bicchi C
    J Chromatogr A; 2012 Jun; 1243():81-90. PubMed ID: 22572161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peak alignment of gas chromatography-mass spectrometry data with deep learning.
    Li M; Wang XR
    J Chromatogr A; 2019 Oct; 1604():460476. PubMed ID: 31488294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel approach to transforming a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ions monitoring.
    Li Y; Ruan Q; Li Y; Ye G; Lu X; Lin X; Xu G
    J Chromatogr A; 2012 Sep; 1255():228-36. PubMed ID: 22342183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Retention Time Trajectory Matching for Peak Identification in Chromatographic Analysis.
    Zang W; Sharma R; Li MW; Fan X
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PyMS: a Python toolkit for processing of gas chromatography-mass spectrometry (GC-MS) data. Application and comparative study of selected tools.
    O'Callaghan S; De Souza DP; Isaac A; Wang Q; Hodkinson L; Olshansky M; Erwin T; Appelbe B; Tull DL; Roessner U; Bacic A; McConville MJ; Likić VA
    BMC Bioinformatics; 2012 May; 13():115. PubMed ID: 22647087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bayesian estimation for molecular profile reconstruction in proteomics based on liquid chromatography and mass spectrometry.
    Strubel G; Giovannelli JF; Paulus C; Gerfault L; Grangeat P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5980-3. PubMed ID: 18003376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Data pre-processing in liquid chromatography-mass spectrometry-based proteomics.
    Zhang X; Asara JM; Adamec J; Ouzzani M; Elmagarmid AK
    Bioinformatics; 2005 Nov; 21(21):4054-9. PubMed ID: 16150809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DISCO: distance and spectrum correlation optimization alignment for two-dimensional gas chromatography time-of-flight mass spectrometry-based metabolomics.
    Wang B; Fang A; Heim J; Bogdanov B; Pugh S; Libardoni M; Zhang X
    Anal Chem; 2010 Jun; 82(12):5069-81. PubMed ID: 20476746
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automatic peak detection coupled with multivariate curve resolution-alternating least squares for peak resolution in gas chromatography-mass spectrometry.
    Zhang YM; Zhang YY; Zhang Q; Lv Y; Sun T; Han L; Bai CC; Yu YJ
    J Chromatogr A; 2019 Sep; 1601():300-309. PubMed ID: 31047656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of mass spectral similarity measures on peak alignment for comprehensive two-dimensional gas chromatography mass spectrometry.
    Kim S; Zhang X
    Comput Math Methods Med; 2013; 2013():509761. PubMed ID: 24151524
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Toward automated chromatographic fingerprinting: A non-alignment approach to gas chromatography mass spectrometry data.
    Vestner J; de Revel G; Krieger-Weber S; Rauhut D; du Toit M; de Villiers A
    Anal Chim Acta; 2016 Mar; 911():42-58. PubMed ID: 26893085
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inversion of peak elution order prevents uniform time alignment of complex liquid-chromatography coupled to mass spectrometry datasets.
    Mitra V; Smilde A; Hoefsloot H; Suits F; Bischoff R; Horvatovich P
    J Chromatogr A; 2014 Dec; 1373():61-72. PubMed ID: 25482036
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Practical non-targeted gas chromatography/mass spectrometry-based metabolomics platform for metabolic phenotype analysis.
    Tsugawa H; Bamba T; Shinohara M; Nishiumi S; Yoshida M; Fukusaki E
    J Biosci Bioeng; 2011 Sep; 112(3):292-8. PubMed ID: 21641865
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accuracy of structure-based sequence alignment of automatic methods.
    Kim C; Lee B
    BMC Bioinformatics; 2007 Sep; 8():355. PubMed ID: 17883866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative evaluation of eight software programs for alignment of gas chromatography-mass spectrometry chromatograms in metabolomics experiments.
    Niu W; Knight E; Xia Q; McGarvey BD
    J Chromatogr A; 2014 Dec; 1374():199-206. PubMed ID: 25435458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A peaklet-based generic strategy for the untargeted analysis of comprehensive two-dimensional gas chromatography mass spectrometry data sets.
    Egert B; Weinert CH; Kulling SE
    J Chromatogr A; 2015 Jul; 1405():168-77. PubMed ID: 26074098
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Guilt-by-association feature selection: identifying biomarkers from proteomic profiles.
    Shin H; Sheu B; Joseph M; Markey MK
    J Biomed Inform; 2008 Feb; 41(1):124-36. PubMed ID: 17544868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.