These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 17963711)
1. A method to determine 18 O kinetic isotope effects in the hydrolysis of nucleotide triphosphates. Du X; Ferguson K; Gregory R; Sprang SR Anal Biochem; 2008 Jan; 372(2):213-21. PubMed ID: 17963711 [TBL] [Abstract][Full Text] [Related]
2. Kinetic isotope effects in Ras-catalyzed GTP hydrolysis: evidence for a loose transition state. Du X; Black GE; Lecchi P; Abramson FP; Sprang SR Proc Natl Acad Sci U S A; 2004 Jun; 101(24):8858-63. PubMed ID: 15178760 [TBL] [Abstract][Full Text] [Related]
3. Transition state structures and the roles of catalytic residues in GAP-facilitated GTPase of Ras as elucidated by (18)O kinetic isotope effects. Du X; Sprang SR Biochemistry; 2009 Jun; 48(21):4538-47. PubMed ID: 19610677 [TBL] [Abstract][Full Text] [Related]
4. Simulated 18O kinetic isotope effects in enzymatic hydrolysis of guanosine triphosphate. Nemukhin AV; Shadrina MS; Grigorenko BL; Du X Biochemistry (Mosc); 2009 Sep; 74(9):1044-8. PubMed ID: 19916916 [TBL] [Abstract][Full Text] [Related]
5. The mechanism of GTP hydrolysis by Ras probed by Fourier transform infrared spectroscopy. Du X; Frei H; Kim SH J Biol Chem; 2000 Mar; 275(12):8492-500. PubMed ID: 10722686 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. John J; Sohmen R; Feuerstein J; Linke R; Wittinghofer A; Goody RS Biochemistry; 1990 Jun; 29(25):6058-65. PubMed ID: 2200519 [TBL] [Abstract][Full Text] [Related]
7. Direct incorporation of guanosine 5'-diphosphate into microtubules without guanosine 5'-triphosphate hydrolysis. Hamel E; Batra JK; Lin CM Biochemistry; 1986 Nov; 25(22):7054-62. PubMed ID: 3026443 [TBL] [Abstract][Full Text] [Related]
8. The interaction of nucleotides with pertussis toxin. Direct evidence for a nucleotide binding site on the toxin regulating the rate of ADP-ribosylation of Ni, the inhibitory regulatory component of adenylyl cyclase. Mattera R; Codina J; Sekura RD; Birnbaumer L J Biol Chem; 1986 Aug; 261(24):11173-9. PubMed ID: 3090044 [TBL] [Abstract][Full Text] [Related]
10. Probing the transition states of four glucoside hydrolyses with 13C kinetic isotope effects measured at natural abundance by NMR spectroscopy. Lee JK; Bain AD; Berti PJ J Am Chem Soc; 2004 Mar; 126(12):3769-76. PubMed ID: 15038730 [TBL] [Abstract][Full Text] [Related]
11. Purification and characterization from bovine brain cytosol of proteins that regulate the GDP/GTP exchange reaction of smg p21s, ras p21-like GTP-binding proteins. Yamamoto T; Kaibuchi K; Mizuno T; Hiroyoshi M; Shirataki H; Takai Y J Biol Chem; 1990 Sep; 265(27):16626-34. PubMed ID: 2118909 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of the guanine nucleotide exchange reaction of Ras GTPase--evidence for a GTP/GDP displacement model. Zhang B; Zhang Y; Shacter E; Zheng Y Biochemistry; 2005 Feb; 44(7):2566-76. PubMed ID: 15709769 [TBL] [Abstract][Full Text] [Related]
13. Ras catalyzes GTP hydrolysis by shifting negative charges from gamma- to beta-phosphate as revealed by time-resolved FTIR difference spectroscopy. Allin C; Gerwert K Biochemistry; 2001 Mar; 40(10):3037-46. PubMed ID: 11258917 [TBL] [Abstract][Full Text] [Related]
14. The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. Zhang B; Zhang Y; Wang Z; Zheng Y J Biol Chem; 2000 Aug; 275(33):25299-307. PubMed ID: 10843989 [TBL] [Abstract][Full Text] [Related]
15. Vibrational structure of GDP and GTP bound to RAS: an isotope-edited FTIR study. Cheng H; Sukal S; Deng H; Leyh TS; Callender R Biochemistry; 2001 Apr; 40(13):4035-43. PubMed ID: 11300784 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of interaction of Rab5 and Rab7 with nucleotides and magnesium ions. Simon I; Zerial M; Goody RS J Biol Chem; 1996 Aug; 271(34):20470-8. PubMed ID: 8702787 [TBL] [Abstract][Full Text] [Related]
17. Roles of G(o)alpha tryptophans in GTP hydrolysis, GDP release, and fluorescence signals. Lan KL; Remmers AE; Neubig RR Biochemistry; 1998 Jan; 37(3):837-43. PubMed ID: 9454573 [TBL] [Abstract][Full Text] [Related]
18. Receptor-stimulated guanine-nucleotide-triphosphate binding to guanine-nucleotide-binding regulatory proteins. Nucleotide exchange and beta-subunit-mediated phosphotransfer reactions. Kaldenberg-Stasch S; Baden M; Fesseler B; Jakobs KH; Wieland T Eur J Biochem; 1994 Apr; 221(1):25-33. PubMed ID: 8168513 [TBL] [Abstract][Full Text] [Related]
19. GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates. Brandt DR; Ross EM J Biol Chem; 1985 Jan; 260(1):266-72. PubMed ID: 2981206 [TBL] [Abstract][Full Text] [Related]
20. Effects of pH on tubulin-nucleotide interactions. Hamel E; Batra JK; Huang AB; Lin CM Arch Biochem Biophys; 1986 Mar; 245(2):316-30. PubMed ID: 3954356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]