These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 17963811)

  • 1. Detection of small RNAs containing the 5'- and the 3'-end sequences of viral genome during West Nile virus replication.
    Maeda A; Maeda J; Takagi H; Kurane I
    Virology; 2008 Feb; 371(1):130-8. PubMed ID: 17963811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein.
    Dong H; Zhang B; Shi PY
    Virology; 2008 Nov; 381(1):123-35. PubMed ID: 18799181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. West Nile virus genome cyclization and RNA replication require two pairs of long-distance RNA interactions.
    Zhang B; Dong H; Stein DA; Iversen PL; Shi PY
    Virology; 2008 Mar; 373(1):1-13. PubMed ID: 18258275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The 5'-terminal region of the Aichi virus genome encodes cis-acting replication elements required for positive- and negative-strand RNA synthesis.
    Nagashima S; Sasaki J; Taniguchi K
    J Virol; 2005 Jun; 79(11):6918-31. PubMed ID: 15890931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA elements within the 5' untranslated region of the West Nile virus genome are critical for RNA synthesis and virus replication.
    Li XF; Jiang T; Yu XD; Deng YQ; Zhao H; Zhu QY; Qin ED; Qin CF
    J Gen Virol; 2010 May; 91(Pt 5):1218-23. PubMed ID: 20016034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of West Nile virus containing a complete 3'CSI RNA deletion.
    Zhang B; Dong H; Ye H; Tilgner M; Shi PY
    Virology; 2010 Dec; 408(2):138-45. PubMed ID: 20965539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction and characterization of subgenomic replicons of New York strain of West Nile virus.
    Shi PY; Tilgner M; Lo MK
    Virology; 2002 May; 296(2):219-33. PubMed ID: 12069521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rubella virus RNA replication is cis-preferential and synthesis of negative- and positive-strand RNAs is regulated by the processing of nonstructural protein.
    Liang Y; Gillam S
    Virology; 2001 Apr; 282(2):307-19. PubMed ID: 11289813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription and replication of the influenza a virus genome.
    Mikulásová A; Varecková E; Fodor E
    Acta Virol; 2000 Oct; 44(5):273-82. PubMed ID: 11252672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective siRNA targeting of the 3' untranslated region of the West Nile virus genome.
    Anthony KG; Bai F; Krishnan MN; Fikrig E; Koski RA
    Antiviral Res; 2009 Jun; 82(3):166-8. PubMed ID: 19135091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A stem-loop-mediated reverse transcription real-time PCR for the selective detection and quantification of the replicative strand of an RNA virus.
    Anwar A; August JT; Too HP
    Anal Biochem; 2006 May; 352(1):120-8. PubMed ID: 16527238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of synthetic oligonucleotides as inhibitors of West Nile virus replication.
    Torrence PF; Gupta N; Whitney C; Morrey JD
    Antiviral Res; 2006 Jun; 70(2):60-5. PubMed ID: 16540182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The flavivirus-conserved penta-nucleotide in the 3' stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation.
    Tilgner M; Deas TS; Shi PY
    Virology; 2005 Jan; 331(2):375-86. PubMed ID: 15629780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of West Nile virus replication in cells stably transfected with vector-based shRNA expression system.
    Ong SP; Chu JJ; Ng ML
    Virus Res; 2008 Aug; 135(2):292-7. PubMed ID: 18514349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of vector-based small interfering RNA against West Nile virus effectively inhibits virus replication.
    Ong SP; Choo BG; Chu JJ; Ng ML
    Antiviral Res; 2006 Dec; 72(3):216-23. PubMed ID: 16870272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for the existence of a pseudoknot structure at the 3' terminus of the flavivirus genomic RNA.
    Shi PY; Brinton MA; Veal JM; Zhong YY; Wilson WD
    Biochemistry; 1996 Apr; 35(13):4222-30. PubMed ID: 8672458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction between the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis.
    Davis WG; Blackwell JL; Shi PY; Brinton MA
    J Virol; 2007 Sep; 81(18):10172-87. PubMed ID: 17626087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotavirus replication: plus-sense templates for double-stranded RNA synthesis are made in viroplasms.
    Silvestri LS; Taraporewala ZF; Patton JT
    J Virol; 2004 Jul; 78(14):7763-74. PubMed ID: 15220450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The majority of the nucleotides in the top loop of the genomic 3' terminal stem loop structure are cis-acting in a West Nile virus infectious clone.
    Elghonemy S; Davis WG; Brinton MA
    Virology; 2005 Jan; 331(2):238-46. PubMed ID: 15629768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise mapping of the replication and transcription promoters of human parainfluenza virus type 3.
    Hoffman MA; Banerjee AK
    Virology; 2000 Mar; 269(1):201-11. PubMed ID: 10725212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.