BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 17964034)

  • 1. Metal homeostasis in Hypogymnia physodes is controlled by lichen substances.
    Hauck M
    Environ Pollut; 2008 May; 153(2):304-8. PubMed ID: 17964034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lichen substances affect metal adsorption in Hypogymnia physodes.
    Hauck M; Huneck S
    J Chem Ecol; 2007 Jan; 33(1):219-23. PubMed ID: 17136464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress.
    Dzubaj A; Backor M; Tomko J; Peli E; Tuba Z
    Ecotoxicol Environ Saf; 2008 Jun; 70(2):319-26. PubMed ID: 17512591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant.
    Rusu AM; Jones GC; Chimonides PD; Purvis OW
    Environ Pollut; 2006 Sep; 143(1):81-8. PubMed ID: 16368174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential responses of certain lichen species to sulfur-containing solutions under acidic conditions as expressed by the production of stress-ethylene.
    Garty J; Kauppi M; Kauppi A
    Environ Res; 1995 May; 69(2):132-43. PubMed ID: 8608772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation and metal-binding characteristics of yellow lichen substances suggest a relationship with site preferences of lichens.
    Hauck M; Jürgens SR; Willenbruch K; Huneck S; Leuschner C
    Ann Bot; 2009 Jan; 103(1):13-22. PubMed ID: 18977765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SEM-EDX analysis in the source apportionment of particulate matter on Hypogymnia physodes lichen transplants around the Cu smelter and former mining town of Karabash, South Urals, Russia.
    Williamson BJ; Mikhailova I; Purvis OW; Udachin V
    Sci Total Environ; 2004 Apr; 322(1-3):139-54. PubMed ID: 15081744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomonitoring of nine elements by the lichen Xanthoria parietina in Adriatic Italy: a retrospective study over a 7-year time span.
    Brunialti G; Frati L
    Sci Total Environ; 2007 Nov; 387(1-3):289-300. PubMed ID: 17716704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada.
    Carreras HA; Wannaz ED; Perez CA; Pignata ML
    Environ Res; 2005 Jan; 97(1):50-7. PubMed ID: 15476733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lichens as a tool for biogeochemical prospecting.
    Chettri MK; Sawidis T; Karataglis S
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):322-35. PubMed ID: 9469887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison between the accumulation capacity of four lichen species transplanted to a urban site.
    Bergamaschi L; Rizzio E; Giaveri G; Loppi S; Gallorini M
    Environ Pollut; 2007 Jul; 148(2):468-76. PubMed ID: 17258850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on accumulation ability of two lichen species Hypogymnia physodes and Usnea hirta at iron-steel factory site, Turkey.
    Cansaran-Duman D
    J Environ Biol; 2011 Nov; 32(6):839-44. PubMed ID: 22471224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lichen substances prevent lichens from nutrient deficiency.
    Hauck M; Willenbruch K; Leuschner C
    J Chem Ecol; 2009 Jan; 35(1):71-3. PubMed ID: 19151928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake and biotransformation of arsenate in the lichen Hypogymnia physodes (L.) Nyl.
    Mrak T; Slejkovec Z; Jeran Z; Jaćimović R; Kastelec D
    Environ Pollut; 2008 Jan; 151(2):300-7. PubMed ID: 17640785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region.
    Białońska D; Dayan FE
    J Chem Ecol; 2005 Dec; 31(12):2975-91. PubMed ID: 16365718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal.
    Godinho RM; Wolterbeek HT; Verburg T; Freitas MC
    Environ Pollut; 2008 Jan; 151(2):318-25. PubMed ID: 17719707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The multi-element content of the lichen Parmelia sulcata, soil, and oak bark in relation to acidification and climate.
    Purvis OW; Dubbin W; Chimonides PD; Jones GC; Read H
    Sci Total Environ; 2008 Feb; 390(2-3):558-68. PubMed ID: 18045659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epiphytic lichens as biomonitors of atmospheric pollution in Slovenian forests.
    Jeran Z; Mrak T; Jaćimović R; Batic F; Kastelec D; Mavsar R; Simoncic P
    Environ Pollut; 2007 Mar; 146(2):324-31. PubMed ID: 16720065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen.
    Basile A; Sorbo S; Aprile G; Conte B; Castaldo Cobianchi R
    Environ Pollut; 2008 Jan; 151(2):401-7. PubMed ID: 18179850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological adaptations in the lichens Peltigera rufescens and Cladina arbuscula var. mitis, and the moss Racomitrium lanuginosum to copper-rich substrate.
    Backor M; Klejdus B; Vantová I; Kovácik J
    Chemosphere; 2009 Sep; 76(10):1340-3. PubMed ID: 19595434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.