These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17964489)

  • 1. Mitochondrial dynamics of yeast during sake brewing.
    Kitagaki H; Shimoi H
    J Biosci Bioeng; 2007 Sep; 104(3):227-30. PubMed ID: 17964489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation.
    Kitagaki H
    Biotechnol Appl Biochem; 2009 May; 53(Pt 3):145-53. PubMed ID: 19476438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of mitochondrial fragmentation during sake brewing causes high malate production in sake yeast.
    Kitagaki H; Kato T; Isogai A; Mikami S; Shimoi H
    J Biosci Bioeng; 2008 Jun; 105(6):675-8. PubMed ID: 18640610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.
    Izawa S; Ikeda K; Miki T; Wakai Y; Inoue Y
    Appl Microbiol Biotechnol; 2010 Sep; 88(1):277-82. PubMed ID: 20625715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation.
    Urbanczyk H; Noguchi C; Wu H; Watanabe D; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2011 Jul; 112(1):44-8. PubMed ID: 21459038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing.
    Watanabe M; Watanabe D; Akao T; Shimoi H
    J Biosci Bioeng; 2009 May; 107(5):516-8. PubMed ID: 19393550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.
    Wu H; Watanabe T; Araki Y; Kitagaki H; Akao T; Takagi H; Shimoi H
    J Biosci Bioeng; 2009 Jun; 107(6):636-40. PubMed ID: 19447341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake.
    Izawa S; Takemura R; Ikeda K; Fukuda K; Wakai Y; Inoue Y
    Appl Microbiol Biotechnol; 2005 Nov; 69(1):86-91. PubMed ID: 15803312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global gene expression analysis of yeast cells during sake brewing.
    Wu H; Zheng X; Araki Y; Sahara H; Takagi H; Shimoi H
    Appl Environ Microbiol; 2006 Nov; 72(11):7353-8. PubMed ID: 16997994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QTL mapping of sake brewing characteristics of yeast.
    Katou T; Namise M; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2009 Apr; 107(4):383-93. PubMed ID: 19332297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making.
    Izawa S; Kita T; Ikeda K; Miki T; Inoue Y
    Biosci Biotechnol Biochem; 2007 Nov; 71(11):2800-7. PubMed ID: 17986786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of ethanol-tolerant xylanase G2 from Aspergillus oryzae on Japanese sake brewing.
    Sato Y; Fukuda H; Zhou Y; Mikami S
    J Biosci Bioeng; 2010 Dec; 110(6):679-83. PubMed ID: 20727822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of mother sediment on yeast growth, biodiversity, and ethanol production during fermentation of Vinsanto wine.
    Domizio P; Mannazzu I; Ciani M
    Int J Food Microbiol; 2009 Jan; 129(1):83-7. PubMed ID: 19027185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular machinery of mitochondrial dynamics in yeast.
    Merz S; Hammermeister M; Altmann K; Dürr M; Westermann B
    Biol Chem; 2007 Sep; 388(9):917-26. PubMed ID: 17696775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system.
    Watanabe D; Ota T; Nitta F; Akao T; Shimoi H
    J Biosci Bioeng; 2011 Jul; 112(1):54-7. PubMed ID: 21470907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using promoter replacement and selection for loss of heterozygosity to generate an industrially applicable sake yeast strain that homozygously overproduces isoamyl acetate.
    Sahara H; Kotaka A; Kondo A; Ueda M; Hata Y
    J Biosci Bioeng; 2009 Nov; 108(5):359-64. PubMed ID: 19804856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gaseous environments modify physiology in the brewing yeast Saccharomyces cerevisiae during batch alcoholic fermentation.
    Pham TH; Mauvais G; Vergoignan C; De Coninck J; Dumont F; Lherminier J; Cachon R; Feron G
    J Appl Microbiol; 2008 Sep; 105(3):858-74. PubMed ID: 18422954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function.
    Shiroma S; Jayakody LN; Horie K; Okamoto K; Kitagaki H
    Appl Environ Microbiol; 2014 Feb; 80(3):1002-12. PubMed ID: 24271183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amplified fragment length polymorphism of the AWA1 gene of sake yeasts for identification of sake yeast strains.
    Shimizu M; Miyashita K; Kitagaki H; Ito K; Shimoi H
    J Biosci Bioeng; 2005 Dec; 100(6):678-80. PubMed ID: 16473780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase.
    Kotaka A; Bando H; Kaya M; Kato-Murai M; Kuroda K; Sahara H; Hata Y; Kondo A; Ueda M
    J Biosci Bioeng; 2008 Jun; 105(6):622-7. PubMed ID: 18640601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.