These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 17964540)

  • 1. Clock gene defect disrupts light-dependency of autonomic nerve activity.
    Ikeda H; Yong Q; Kurose T; Todo T; Mizunoya W; Fushiki T; Seino Y; Yamada Y
    Biochem Biophys Res Commun; 2007 Dec; 364(3):457-63. PubMed ID: 17964540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian intraocular pressure rhythm is generated by clock genes.
    Maeda A; Tsujiya S; Higashide T; Toida K; Todo T; Ueyama T; Okamura H; Sugiyama K
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):4050-2. PubMed ID: 16936122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice.
    Yamanaka Y; Suzuki Y; Todo T; Honma K; Honma S
    Genes Cells; 2010 Oct; 15(10):1063-71. PubMed ID: 20825493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autonomic and cardiovascular responses to scent stimulation are altered in cry KO mice.
    Tanida M; Yamatodani A; Niijima A; Shen J; Todo T; Nagai K
    Neurosci Lett; 2007 Feb; 413(2):177-82. PubMed ID: 17175102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of vitamin A depletion on nonvisual phototransduction pathways in cryptochromeless mice.
    Thompson CL; Selby CP; Van Gelder RN; Blaner WS; Lee J; Quadro L; Lai K; Gottesman ME; Sancar A
    J Biol Rhythms; 2004 Dec; 19(6):504-17. PubMed ID: 15523112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Circadian behavioral rhythms in Cry1/Cry2 double-deficient mice induced by methamphetamine.
    Honma S; Yasuda T; Yasui A; van der Horst GT; Honma K
    J Biol Rhythms; 2008 Feb; 23(1):91-4. PubMed ID: 18258761
    [No Abstract]   [Full Text] [Related]  

  • 7. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses.
    Cameron MA; Barnard AR; Hut RA; Bonnefont X; van der Horst GT; Hankins MW; Lucas RJ
    J Biol Rhythms; 2008 Dec; 23(6):489-501. PubMed ID: 19060258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian time-place learning in mice depends on Cry genes.
    Van der Zee EA; Havekes R; Barf RP; Hut RA; Nijholt IM; Jacobs EH; Gerkema MP
    Curr Biol; 2008 Jun; 18(11):844-8. PubMed ID: 18514517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice.
    Okano S; Akashi M; Hayasaka K; Nakajima O
    Neurosci Lett; 2009 Feb; 451(3):246-51. PubMed ID: 19159659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Obesity alters circadian expressions of molecular clock genes in the brainstem.
    Kaneko K; Yamada T; Tsukita S; Takahashi K; Ishigaki Y; Oka Y; Katagiri H
    Brain Res; 2009 Mar; 1263():58-68. PubMed ID: 19401184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks.
    Yuan Q; Metterville D; Briscoe AD; Reppert SM
    Mol Biol Evol; 2007 Apr; 24(4):948-55. PubMed ID: 17244599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer.
    Gauger MA; Sancar A
    Cancer Res; 2005 Aug; 65(15):6828-34. PubMed ID: 16061665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PER2 controls circadian periods through nuclear localization in the suprachiasmatic nucleus.
    Miyazaki K; Wakabayashi M; Chikahisa S; Sei H; Ishida N
    Genes Cells; 2007 Nov; 12(11):1225-34. PubMed ID: 17986006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha.
    Hashiramoto A; Yamane T; Tsumiyama K; Yoshida K; Komai K; Yamada H; Yamazaki F; Doi M; Okamura H; Shiozawa S
    J Immunol; 2010 Feb; 184(3):1560-5. PubMed ID: 20042581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CLOCK-mediated acetylation of BMAL1 controls circadian function.
    Hirayama J; Sahar S; Grimaldi B; Tamaru T; Takamatsu K; Nakahata Y; Sassone-Corsi P
    Nature; 2007 Dec; 450(7172):1086-90. PubMed ID: 18075593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation.
    Reppert SM
    Cold Spring Harb Symp Quant Biol; 2007; 72():113-8. PubMed ID: 18419268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-fat diet disrupts behavioral and molecular circadian rhythms in mice.
    Kohsaka A; Laposky AD; Ramsey KM; Estrada C; Joshu C; Kobayashi Y; Turek FW; Bass J
    Cell Metab; 2007 Nov; 6(5):414-21. PubMed ID: 17983587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interval timing is intact in arrhythmic Cry1/Cry2-deficient mice.
    Papachristos EB; Jacobs EH; Elgersma Y
    J Biol Rhythms; 2011 Aug; 26(4):305-13. PubMed ID: 21775289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The involvement of Cry1 and Cry2 genes in the regulation of the circadian body temperature rhythm in mice.
    Nagashima K; Matsue K; Konishi M; Iidaka C; Miyazaki K; Ishida N; Kanosue K
    Am J Physiol Regul Integr Comp Physiol; 2005 Jan; 288(1):R329-35. PubMed ID: 15331384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of angiotensin and the clock system in the circadian regulation of plasminogen activator inhibitor-1.
    Masuda Y; Emoto N; Nonaka H; Yagita K; Todo T; Okamura H; Yokoyama M; Hirata K
    Kobe J Med Sci; 2009 Mar; 54(6):E264-71. PubMed ID: 19628967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.