These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

346 related articles for article (PubMed ID: 17964580)

  • 1. Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping.
    Piccin E; Coltro WK; Fracassi da Silva JA; Neto SC; Mazo LH; Carrilho E
    J Chromatogr A; 2007 Nov; 1173(1-2):151-8. PubMed ID: 17964580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid prototyping of thermoset polyester microfluidic devices.
    Fiorini GS; Lorenz RM; Kuo JS; Chiu DT
    Anal Chem; 2004 Aug; 76(16):4697-704. PubMed ID: 15307779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer microchips bonded by O2-plasma activation.
    Wu Z; Xanthopoulos N; Reymond F; Rossier JS; Girault HH
    Electrophoresis; 2002 Mar; 23(5):782-90. PubMed ID: 11891712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of SU-8 based microchip electrophoresis with integrated electrochemical detection for neurotransmitters.
    Castaño-Alvarez M; Fernández-Abedul MT; Costa-García A; Agirregabiria M; Fernández LJ; Ruano-López JM; Barredo-Presa B
    Talanta; 2009 Nov; 80(1):24-30. PubMed ID: 19782188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates.
    Paul D; Pallandre A; Miserere S; Weber J; Viovy JL
    Electrophoresis; 2007 Apr; 28(7):1115-22. PubMed ID: 17330225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels.
    Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH
    Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption-resistant acrylic copolymer for prototyping of microfluidic devices for proteins and peptides.
    Liu J; Sun X; Lee ML
    Anal Chem; 2007 Mar; 79(5):1926-31. PubMed ID: 17249641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis.
    Vickers JA; Caulum MM; Henry CS
    Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.
    Kelly RT; Li Y; Woolley AT
    Anal Chem; 2006 Apr; 78(8):2565-70. PubMed ID: 16615765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient dynamic modification of plastic microfluidic devices using proteins in microchip capillary electrophoresis.
    Naruishi N; Tanaka Y; Higashi T; Wakida S
    J Chromatogr A; 2006 Oct; 1130(2):169-74. PubMed ID: 16860810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyurethane-based microfluidic devices for blood contacting applications.
    Wu WI; Sask KN; Brash JL; Selvaganapathy PR
    Lab Chip; 2012 Mar; 12(5):960-70. PubMed ID: 22273592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and evaluation of single- and dual-channel (Pi-design) microchip electrophoresis with electrochemical detection.
    Pozo-Ayuso DF; Castaño-Alvarez M; Fernández-la-Villa A; García-Granda M; Fernández-Abedul MT; Costa-García A; Rodríguez-García J
    J Chromatogr A; 2008 Feb; 1180(1-2):193-202. PubMed ID: 18177663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis.
    Liu J; Lee ML
    Electrophoresis; 2006 Sep; 27(18):3533-46. PubMed ID: 16927422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple approaches to close the open structure of microfluidic chips and connecting them to the macro-world.
    Székely L; Guttman A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Sep; 841(1-2):123-8. PubMed ID: 16597517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores.
    Fan H; Chen Z; Zhang L; Yang P; Chen G
    J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of poly(methyl methacrylate) microchannels by in situ polymerization with a novel metal template.
    Chen Z; Gao Y; Su R; Li C; Lin J
    Electrophoresis; 2003 Sep; 24(18):3246-52. PubMed ID: 14518052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-reactive acrylic copolymer for fabrication of microfluidic devices.
    Liu J; Sun X; Lee ML
    Anal Chem; 2005 Oct; 77(19):6280-7. PubMed ID: 16194089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.