These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 17964862)

  • 1. Reactivity of methemoglobin immobilized on TiO2 nanoparticle films.
    Milsom EV; Dash HA; Jenkins AT; Opallo M; Marken F
    Bioelectrochemistry; 2008 Feb; 72(1):1-2. PubMed ID: 17964862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of conductivity and electrochemical doping on the reduction of methemoglobin immobilized in nanoparticulate TiO2 films.
    Milsom EV; Dash HA; Jenkins TA; Opallo M; Marken F
    Bioelectrochemistry; 2007 May; 70(2):221-7. PubMed ID: 17056301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly ordered transparent mesoporous TiO2 thin films: an attractive matrix for efficient immobilization and spectroelectrochemical characterization of cytochrome c.
    Renault C; Balland V; Martinez-Ferrero E; Nicole L; Sanchez C; Limoges B
    Chem Commun (Camb); 2009 Dec; (48):7494-6. PubMed ID: 20024257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid / liquid ion-transfer processes at the dioctylphosphoric acid (N,N-didodecyl-N',N'-diethylphenylenediamine) / water (electrolyte) interface at graphite and mesoporous TiO2 substrates.
    Stott SJ; McKenzie KJ; Mortimer RJ; Hayman CM; Buckley BR; Bulman Page PC; Marken F; Shul G; Opallo M
    Anal Chem; 2004 Sep; 76(18):5364-9. PubMed ID: 15362893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical properties of core-shell TiC-TiO2 nanoparticle films immobilized at ITO electrode surfaces.
    Stott SJ; Mortimer RJ; Dann SE; Oyama M; Marken F
    Phys Chem Chem Phys; 2006 Dec; 8(46):5437-43. PubMed ID: 17119652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle films as electrodes: voltammetric sensitivity to the nanoparticle energy gap.
    Ranganathan S; Guo R; Murray RW
    Langmuir; 2007 Jun; 23(13):7372-7. PubMed ID: 17508765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TiO2 phytate films as hosts and conduits for cytochrome c electrochemistry.
    McKenzie KJ; Marken F; Opallo M
    Bioelectrochemistry; 2005 Apr; 66(1-2):41-7. PubMed ID: 15833701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoferritin-templated synthesis of encoded metallic phosphate nanoparticle tags.
    Liu G; Wu H; Dohnalkova A; Lin Y
    Anal Chem; 2007 Aug; 79(15):5614-9. PubMed ID: 17600385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production.
    Reisner E; Fontecilla-Camps JC; Armstrong FA
    Chem Commun (Camb); 2009 Feb; (5):550-2. PubMed ID: 19283287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox processes in mesoporous oxide membranes: layered TiO2 phytate and TiO2 flavin adenine dinucleotide films.
    Milsom EV; Perrott HR; Peter LM; Marken F
    Langmuir; 2005 Oct; 21(21):9482-7. PubMed ID: 16207025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical conductivity in patterned silver-mesoporous titania nanocomposite thin films: towards robust 3D nano-electrodes.
    Martínez ED; Granja L; Bellino MG; Soler-Illia GJ
    Phys Chem Chem Phys; 2010 Nov; 12(43):14445-8. PubMed ID: 20886160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UV protection of reduced graphene oxide films by TiO2 nanoparticle incorporation.
    Kim YK; Min DH
    Nanoscale; 2013 May; 5(9):3638-42. PubMed ID: 23532399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apoferritin-templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay.
    Liu G; Wu H; Wang J; Lin Y
    Small; 2006 Oct; 2(10):1139-43. PubMed ID: 17193578
    [No Abstract]   [Full Text] [Related]  

  • 14. Switching the direction of plasmon-induced photocurrents by cytochrome c at Au-TiO(2) nanocomposites.
    Zhu A; Luo Y; Tian Y
    Chem Commun (Camb); 2009 Nov; (42):6448-50. PubMed ID: 19841805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of reduction processes on the colour and photochromism of amorphous mesoporous TiO(2) thin films loaded with a silver salt.
    Nadar L; Sayah R; Vocanson F; Crespo-Monteiro N; Boukenter A; Sao Joao S; Destouches N
    Photochem Photobiol Sci; 2011 Nov; 10(11):1810-6. PubMed ID: 21918753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical conversion of NO3(-) to N2 by using a photoelectrochemical cell composed of a nanoporous TiO2 film photoanode and an O2 reducing cathode.
    Saito R; Ueno H; Nemoto J; Fujii Y; Izuoka A; Kaneko M
    Chem Commun (Camb); 2009 Jun; (22):3231-3. PubMed ID: 19587923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ; Guo LH
    Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface.
    Li M; Zhao G; Geng R; Hu H
    Bioelectrochemistry; 2008 Nov; 74(1):217-21. PubMed ID: 18805070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine.
    Maleki N; Safavi A; Farjami E; Tajabadi F
    Anal Chim Acta; 2008 Mar; 611(2):151-5. PubMed ID: 18328315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.