These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 17964862)

  • 21. Controlled deposition of silver nanoparticles in mesoporous single- or multilayer thin films: from tuned pore filling to selective spatial location of nanometric objects.
    Fuertes MC; Marchena M; Marchi MC; Wolosiuk A; Soler-Illia GJ
    Small; 2009 Feb; 5(2):272-80. PubMed ID: 19115355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interfacial electron transfer on cytochrome-c sensitised conformally coated mesoporous TiO2 films.
    Topoglidis E; Lutz T; Durrant JR; Palomares E
    Bioelectrochemistry; 2008 Nov; 74(1):142-8. PubMed ID: 18644749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modification of mesoporous TiO2 electrodes with cross-linkable B12 derivatives.
    Asaftei S; Walder L
    Langmuir; 2006 Jun; 22(13):5544-7. PubMed ID: 16768470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films.
    Zheng W; Zheng YF; Jin KW; Wang N
    Talanta; 2008 Feb; 74(5):1414-9. PubMed ID: 18371798
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding of catechols to mononuclear titanium(IV) and to 1- and 5-nm TiO2 nanoparticles.
    Creutz C; Chou MH
    Inorg Chem; 2008 May; 47(9):3509-14. PubMed ID: 18366179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change.
    Chen L; Sabatini DA; Kibbey TC
    J Contam Hydrol; 2010 Nov; 118(3-4):199-207. PubMed ID: 20739092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode.
    Agüí L; Peña-Farfal C; Yáñez-Sedeño P; Pingarrón JM
    Talanta; 2007 Dec; 74(3):412-20. PubMed ID: 18371657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of the buffer solution on the adsorption and stability of horse heart myoglobin on commercial mesoporous titanium dioxide: a matter of the right choice.
    Loreto S; Cuypers B; Brokken J; Van Doorslaer S; De Wael K; Meynen V
    Phys Chem Chem Phys; 2017 May; 19(21):13503-13514. PubMed ID: 28497146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of a gold electrode, modified by a self-assembled monolayer of 2-mercaptodecylhydroquinone, to the electroanalysis of hemoglobin.
    Zhang J; Seo K; Jeon IC
    Anal Bioanal Chem; 2003 Feb; 375(4):539-43. PubMed ID: 12610707
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoelectric performance of bacteria photosynthetic proteins entrapped on tailored mesoporous WO3-TiO2 films.
    Lu Y; Yuan M; Liu Y; Tu B; Xu C; Liu B; Zhao D; Kong J
    Langmuir; 2005 Apr; 21(9):4071-6. PubMed ID: 15835976
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltammetric determination of hypoxanthine based on the enhancement effect of mesoporous TiO2-modified electrode.
    Xie X; Yang K; Sun D
    Colloids Surf B Biointerfaces; 2008 Dec; 67(2):261-4. PubMed ID: 18930383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling chemical reactivity at solid-solution interfaces by means of hydrophobic magnetic nanoparticles.
    Willner I; Katz E
    Langmuir; 2006 Feb; 22(4):1409-19. PubMed ID: 16460055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of urea surface modification and photocatalytic cleaning on surface-assisted laser desorption ionization mass spectrometry with amorphous TiO2 nanoparticles.
    Watanabe T; Okumura K; Kawasaki H; Arakawa R
    J Mass Spectrom; 2009 Oct; 44(10):1443-51. PubMed ID: 19685481
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impregnating titanium phosphate nanoparticles onto a porous cation exchanger for enhanced lead removal from waters.
    Jia K; Pan B; Lv L; Zhang Q; Wang X; Pan B; Zhang W
    J Colloid Interface Sci; 2009 Mar; 331(2):453-7. PubMed ID: 19101673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis of ordered mesoporous crystalline carbon-anatase composites with high titania contents.
    Qian X; Wan Y; Wen Y; Jia N; Li H; Zhao D
    J Colloid Interface Sci; 2008 Dec; 328(2):367-73. PubMed ID: 18930241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct electrochemistry and electrocatalytic activity of cytochrome c covalently immobilized on a boron-doped nanocrystalline diamond electrode.
    Zhou Y; Zhi J; Zou Y; Zhang W; Lee ST
    Anal Chem; 2008 Jun; 80(11):4141-6. PubMed ID: 18447324
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced photocurrents via redox modulation by fluoride binding to oxoporphyrinogen in a zinc porphyrin-oxoporphyrinogen surface modified TiO2 supramolecular solar cell.
    Subbaiyan NK; Hill JP; Ariga K; Fukuzumi S; D'Souza F
    Chem Commun (Camb); 2011 Jun; 47(21):6003-5. PubMed ID: 21503342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of Fe-doped TiO2 nanoparticle derived from modified hydrothermal process on the photocatalytic degradation performance on methylene blue.
    Li Z; Shen W; He W; Zu X
    J Hazard Mater; 2008 Jul; 155(3):590-4. PubMed ID: 18179869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Direct electrochemistry and electrochemical catalysis of myoglobin-TiO2 coated multiwalled carbon nanotubes modified electrode.
    Zhang L; Tian DB; Zhu JJ
    Bioelectrochemistry; 2008 Nov; 74(1):157-63. PubMed ID: 18722825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.