BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17964944)

  • 1. Following molecular transitions with single residue spatial and millisecond time resolution.
    Shcherbakova I; Mitra S; Beer RH; Brenowitz M
    Methods Cell Biol; 2008; 84():589-615. PubMed ID: 17964944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting.
    Shcherbakova I; Brenowitz M
    Nat Protoc; 2008; 3(2):288-302. PubMed ID: 18274531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins.
    Shcherbakova I; Mitra S; Beer RH; Brenowitz M
    Nucleic Acids Res; 2006 Mar; 34(6):e48. PubMed ID: 16582097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding.
    Sclavi B; Woodson S; Sullivan M; Chance MR; Brenowitz M
    J Mol Biol; 1997 Feb; 266(1):144-59. PubMed ID: 9054977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping nucleic acid structure by hydroxyl radical cleavage.
    Tullius TD; Greenbaum JA
    Curr Opin Chem Biol; 2005 Apr; 9(2):127-34. PubMed ID: 15811796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Following the dynamics of changes in solvent accessibility of 16 S and 23 S rRNA during ribosomal subunit association using synchrotron-generated hydroxyl radicals.
    Nguyenle T; Laurberg M; Brenowitz M; Noller HF
    J Mol Biol; 2006 Jun; 359(5):1235-48. PubMed ID: 16725154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl-radical footprinting to probe equilibrium changes in RNA tertiary structure.
    Shcherbakova I; Mitra S
    Methods Enzymol; 2009; 468():31-46. PubMed ID: 20946763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photochemical and electrophysical production of radicals on millisecond timescales to probe the structure, dynamics and interactions of proteins.
    Maleknia SD; Wong JW; Downard KM
    Photochem Photobiol Sci; 2004 Aug; 3(8):741-8. PubMed ID: 15295629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of macromolecular folding and structure by synchrotron x-ray radiolysis techniques.
    Maleknia SD; Ralston CY; Brenowitz MD; Downard KM; Chance MR
    Anal Biochem; 2001 Feb; 289(2):103-15. PubMed ID: 11161303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radical approaches to probe protein structure, folding, and interactions by mass spectrometry.
    Maleknia SD; Downard K
    Mass Spectrom Rev; 2001; 20(6):388-401. PubMed ID: 11997945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved hydroxyl-radical footprinting of RNA using Fe(II)-EDTA.
    Hampel KJ; Burke JM
    Methods; 2001 Mar; 23(3):233-9. PubMed ID: 11243836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved footprinting for the study of the structural dynamics of DNA-protein interactions.
    Sclavi B
    Biochem Soc Trans; 2008 Aug; 36(Pt 4):745-8. PubMed ID: 18631151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microfluidic device that generates hydroxyl radicals to probe the solvent accessible surface of nucleic acids.
    Jones CD; Schlatterer JC; Brenowitz M; Pollack L
    Lab Chip; 2011 Oct; 11(20):3458-64. PubMed ID: 21863183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring equilibrium changes in RNA structure by 'peroxidative' and 'oxidative' hydroxyl radical footprinting.
    Bachu R; Padlan FC; Rouhanifard S; Brenowitz M; Schlatterer JC
    J Vis Exp; 2011 Oct; (56):e3244. PubMed ID: 22025107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical "footprinting".
    Brenowitz M; Chance MR; Dhavan G; Takamoto K
    Curr Opin Struct Biol; 2002 Oct; 12(5):648-53. PubMed ID: 12464318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-automated, single-band peak-fitting analysis of hydroxyl radical nucleic acid footprint autoradiograms for the quantitative analysis of transitions.
    Takamoto K; Chance MR; Brenowitz M
    Nucleic Acids Res; 2004 Aug; 32(15):E119. PubMed ID: 15319447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-induced double-strand DNA and site-specific protein cleavage activity of L-histidine (mu-oxo)diiron(III) complexes of heterocyclic bases.
    Roy M; Bhowmick T; Santhanagopal R; Ramakumar S; Chakravarty AR
    Dalton Trans; 2009 Jun; (24):4671-82. PubMed ID: 19513475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping protein-ligand interactions by hydroxyl-radical protein footprinting.
    Loizos N
    Methods Mol Biol; 2004; 261():199-210. PubMed ID: 15064460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroxyl radical scavenging assay of phenolics and flavonoids with a modified cupric reducing antioxidant capacity (CUPRAC) method using catalase for hydrogen peroxide degradation.
    Ozyürek M; Bektaşoğlu B; Güçlü K; Apak R
    Anal Chim Acta; 2008 Jun; 616(2):196-206. PubMed ID: 18482604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementing global measures of RNA folding with local reports of backbone solvent accessibility by time resolved hydroxyl radical footprinting.
    Schlatterer JC; Brenowitz M
    Methods; 2009 Oct; 49(2):142-7. PubMed ID: 19426806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.