These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17964944)

  • 61. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
    Sun J; Mao JD; Gong H; Lan Y
    J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hydroxyl radical probing of tRNA (Gm18) methyltransferase [TrmH]-AdoMet-artificial tRNA ternary complex.
    Ochi A; Hori H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):373-4. PubMed ID: 18029742
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 64. High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis.
    Mitra S; Shcherbakova IV; Altman RB; Brenowitz M; Laederach A
    Nucleic Acids Res; 2008 Jun; 36(11):e63. PubMed ID: 18477638
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Theoretical studies of the reaction of hydroxyl radical with methyl acetate.
    Yang L; Liu JY; Li ZS
    J Phys Chem A; 2008 Jul; 112(28):6364-72. PubMed ID: 18564834
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Amide I two-dimensional infrared spectroscopy of proteins.
    Ganim Z; Chung HS; Smith AW; Deflores LP; Jones KC; Tokmakoff A
    Acc Chem Res; 2008 Mar; 41(3):432-41. PubMed ID: 18288813
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Propagation of protein glycation damage involves modification of tryptophan residues via reactive oxygen species: inhibition by pyridoxamine.
    Chetyrkin SV; Mathis ME; Ham AJ; Hachey DL; Hudson BG; Voziyan PA
    Free Radic Biol Med; 2008 Apr; 44(7):1276-85. PubMed ID: 18374270
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Unsymmetrical Fe(III)Co(II) and Ga(III)Co(II) complexes as chemical hydrolases: biomimetic models for purple acid phosphatases (PAPs).
    Xavier FR; Neves A; Casellato A; Peralta RA; Bortoluzzi AJ; Szpoganicz B; Severino PC; Terenzi H; Tomkowicz Z; Ostrovsky S; Haase W; Ozarowski A; Krzystek J; Telser J; Schenk G; Gahan LR
    Inorg Chem; 2009 Aug; 48(16):7905-21. PubMed ID: 19603814
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Application of multivariate resolution methods to the study of biochemical and biophysical processes.
    Jaumot J; Vives M; Gargallo R
    Anal Biochem; 2004 Apr; 327(1):1-13. PubMed ID: 15033505
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Real-time dynamics of ribosome-ligand interaction by time-resolved chemical probing methods.
    Fabbretti A; Milon P; Giuliodori AM; Gualerzi CO; Pon CL
    Methods Enzymol; 2007; 430():45-58. PubMed ID: 17913634
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantitative Protein Topography Measurements by High Resolution Hydroxyl Radical Protein Footprinting Enable Accurate Molecular Model Selection.
    Xie B; Sood A; Woods RJ; Sharp JS
    Sci Rep; 2017 Jul; 7(1):4552. PubMed ID: 28674401
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In Cell Footprinting Coupled with Mass Spectrometry for the Structural Analysis of Proteins in Live Cells.
    Espino JA; Mali VS; Jones LM
    Anal Chem; 2015 Aug; 87(15):7971-8. PubMed ID: 26146849
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analyzing the structure of macromolecules in their native cellular environment using hydroxyl radical footprinting.
    Chea EE; Jones LM
    Analyst; 2018 Feb; 143(4):798-807. PubMed ID: 29355258
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics.
    Xu G; Chance MR
    Chem Rev; 2007 Aug; 107(8):3514-43. PubMed ID: 17683160
    [No Abstract]   [Full Text] [Related]  

  • 75. Time-resolved analysis of biological reactions based on heterogeneous assays in liquid plugs of nanoliter volume.
    Rendl M; Brandstetter T; Rühe J
    Anal Chem; 2013 Oct; 85(20):9469-77. PubMed ID: 24083685
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Fast Protein Footprinting by X-ray Mediated Radical Trifluoromethylation.
    Cheng M; Asuru A; Kiselar J; Mathai G; Chance MR; Gross ML
    J Am Soc Mass Spectrom; 2020 May; 31(5):1019-1024. PubMed ID: 32255631
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Exhaustive Enumeration of Kinetic Model Topologies for the Analysis of Time-Resolved RNA Folding.
    Martin JS; Simmons K; Laederach A
    Algorithms; 2009 Mar; 2(1):200-214. PubMed ID: 19865589
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays.
    Hao Y; Bohon J; Hulscher R; Rappé MC; Gupta S; Adilakshmi T; Woodson SA
    Curr Protoc Nucleic Acid Chem; 2018 Jun; 73(1):e52. PubMed ID: 29927103
    [TBL] [Abstract][Full Text] [Related]  

  • 79. RNA folding pathways and the self-assembly of ribosomes.
    Woodson SA
    Acc Chem Res; 2011 Dec; 44(12):1312-9. PubMed ID: 21714483
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structural analysis of RNA in living cells by in vivo synchrotron X-ray footprinting.
    Adilakshmi T; Soper SF; Woodson SA
    Methods Enzymol; 2009; 468():239-58. PubMed ID: 20946773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.