BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 17965031)

  • 1. Stearylamine-bearing cationic liposomes kill Leishmania parasites through surface exposed negatively charged phosphatidylserine.
    Banerjee A; Roychoudhury J; Ali N
    J Antimicrob Chemother; 2008 Jan; 61(1):103-10. PubMed ID: 17965031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leishmanicidal activity of stearylamine-bearing liposomes in vitro.
    Afrin F; Dey T; Anam K; Ali N
    J Parasitol; 2001 Feb; 87(1):188-93. PubMed ID: 11227889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Leishmania (L.) chagasi amastigotes through macrophage scavenger receptors: the use of drugs entrapped in liposomes containing phosphatidylserine.
    Tempone AG; Perez D; Rath S; Vilarinho AL; Mortara RA; de Andrade HF
    J Antimicrob Chemother; 2004 Jul; 54(1):60-8. PubMed ID: 15163652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages.
    Borborema SE; Schwendener RA; Osso JA; de Andrade HF; do Nascimento N
    Int J Antimicrob Agents; 2011 Oct; 38(4):341-7. PubMed ID: 21783345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrophage activation for microbicidal activity against Leishmania major: inhibition of lymphokine activation by phosphatidylcholine-phosphatidylserine liposomes.
    Gilbreath MJ; Nacy CA; Hoover DL; Alving CR; Swartz GM; Meltzer MS
    J Immunol; 1985 May; 134(5):3420-5. PubMed ID: 3980997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of lymphokine-induced macrophage microbicidal activity against Leishmania major by liposomes: characterization of the physicochemical requirements for liposome inhibition.
    Gilbreath MJ; Hoover DL; Alving CR; Swartz GM; Meltzer MS
    J Immunol; 1986 Sep; 137(5):1681-7. PubMed ID: 3745916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of liposomal buparvaquone in an experimental hamster model of Leishmania (L.) infantum chagasi.
    Reimão JQ; Colombo FA; Pereira-Chioccola VL; Tempone AG
    Exp Parasitol; 2012 Mar; 130(3):195-9. PubMed ID: 22281156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of endostatin to phosphatidylserine-containing membranes and formation of amyloid-like fibers.
    Zhao H; Jutila A; Nurminen T; Wickström SA; Keski-Oja J; Kinnunen PK
    Biochemistry; 2005 Mar; 44(8):2857-63. PubMed ID: 15723529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B.
    Shadab M; Jha B; Asad M; Deepthi M; Kamran M; Ali N
    PLoS One; 2017; 12(2):e0171306. PubMed ID: 28170432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quercetin interferes with iron metabolism in Leishmania donovani and targets ribonucleotide reductase to exert leishmanicidal activity.
    Sen G; Mukhopadhyay S; Ray M; Biswas T
    J Antimicrob Chemother; 2008 May; 61(5):1066-75. PubMed ID: 18285311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cationic liposome-encapsulated antisense oligonucleotide mediates efficient killing of intracellular Leishmania.
    Chakraborty R; Dasgupta D; Adhya S; Basu MK
    Biochem J; 1999 Jun; 340 ( Pt 2)(Pt 2):393-6. PubMed ID: 10333480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox-active dinitrodiphenylthioethers against Leishmania: synthesis, structure-activity relationships and mechanism of action studies.
    Delfín DA; Morgan RE; Zhu X; Werbovetz KA
    Bioorg Med Chem; 2009 Jan; 17(2):820-9. PubMed ID: 19058972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antileishmanial and trypanocidal activities of new miltefosine liposomal formulations.
    Papagiannaros A; Bories C; Demetzos C; Loiseau PM
    Biomed Pharmacother; 2005 Dec; 59(10):545-50. PubMed ID: 16325367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NK-lysin derived peptide NK-2 preferentially kills cancer cells with increased surface levels of negatively charged phosphatidylserine.
    Schröder-Borm H; Bakalova R; Andrä J
    FEBS Lett; 2005 Nov; 579(27):6128-34. PubMed ID: 16269280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antileishmanial activities of stearylamine-bearing liposomes.
    Dey T; Anam K; Afrin F; Ali N
    Antimicrob Agents Chemother; 2000 Jun; 44(6):1739-42. PubMed ID: 10817745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kahalalide F, an antitumor depsipeptide in clinical trials, and its analogues as effective antileishmanial agents.
    Cruz LJ; Luque-Ortega JR; Rivas L; Albericio F
    Mol Pharm; 2009; 6(3):813-24. PubMed ID: 19317431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and in vitro antileishmanial activity of 5-substituted-2'-deoxyuridine derivatives.
    Peyron C; Benhida R; Bories C; Loiseau PM
    Bioorg Chem; 2005 Dec; 33(6):439-47. PubMed ID: 16168460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+-activated transbilayer movement of plasma membrane phospholipids in Leishmania donovani during ionomycin or thapsigargin stimulation.
    Weingärtner A; dos Santos MG; Drobot B; Pomorski TG
    Mol Biochem Parasitol; 2011 Oct; 179(2):59-68. PubMed ID: 21684309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of natural L- to D-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H.
    Mangoni ML; Papo N; Saugar JM; Barra D; Shai Y; Simmaco M; Rivas L
    Biochemistry; 2006 Apr; 45(13):4266-76. PubMed ID: 16566601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quassin alters the immunological patterns of murine macrophages through generation of nitric oxide to exert antileishmanial activity.
    Bhattacharjee S; Gupta G; Bhattacharya P; Mukherjee A; Mujumdar SB; Pal A; Majumdar S
    J Antimicrob Chemother; 2009 Feb; 63(2):317-24. PubMed ID: 19036753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.