These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
552 related articles for article (PubMed ID: 17965140)
1. The expression of NFATc1 in adult rat skeletal muscle fibres. Mutungi G Exp Physiol; 2008 Mar; 93(3):399-406. PubMed ID: 17965140 [TBL] [Abstract][Full Text] [Related]
2. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles. Martelly I; Soulet L; Bonnavaud S; Cebrian J; Gautron J; Barritault D Cell Mol Biol (Noisy-le-grand); 2000 Nov; 46(7):1239-48. PubMed ID: 11075953 [TBL] [Abstract][Full Text] [Related]
3. Expression of neuronal nitric oxide synthase in fast rat skeletal muscle. Vranić TS; Bobinac D; Jurisić-Erzen D; Muhvić D; Sandri M; Jerković R Coll Antropol; 2002 Dec; 26 Suppl():183-8. PubMed ID: 12674853 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide synthase II in rat skeletal muscles. Punkt K; Naupert A; Wellner M; Asmussen G; Schmidt C; Buchwalow IB Histochem Cell Biol; 2002 Nov; 118(5):371-9. PubMed ID: 12432448 [TBL] [Abstract][Full Text] [Related]
5. Cell size and oxidative enzyme activity of rat biceps brachii and triceps brachii muscles. Matsumoto A; Nagatomo F; Mori A; Ohira Y; Ishihara A J Physiol Sci; 2007 Oct; 57(5):311-6. PubMed ID: 17971264 [TBL] [Abstract][Full Text] [Related]
6. Matching of sarcoplasmic reticulum and contractile properties in rat fast- and slow-twitch muscle fibres. Trinh HH; Lamb GD Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):591-600. PubMed ID: 16789925 [TBL] [Abstract][Full Text] [Related]
7. Fibre type composition of soleus and extensor digitorum longus muscles in normal female inbred Lewis rats. Soukup T; Zacharová G; Smerdu V Acta Histochem; 2002; 104(4):399-405. PubMed ID: 12553710 [TBL] [Abstract][Full Text] [Related]
8. [NFATc1 and slow-to-fast shift of myosin heavy chain isoforms under functional unloading of the rat m. soleus]. Mukhina AM; Zhelezniakova AV; Kitina IuN; Shenkman BS; Nemirovskaia TL Biofizika; 2006; 51(5):918-23. PubMed ID: 17131834 [TBL] [Abstract][Full Text] [Related]
9. Morphological and biochemical alterations of skeletal muscles from the genetically obese (ob/ob) mouse. Kemp JG; Blazev R; Stephenson DG; Stephenson GM Int J Obes (Lond); 2009 Aug; 33(8):831-41. PubMed ID: 19528970 [TBL] [Abstract][Full Text] [Related]
10. NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. McCullagh KJ; Calabria E; Pallafacchina G; Ciciliot S; Serrano AL; Argentini C; Kalhovde JM; Lømo T; Schiaffino S Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10590-5. PubMed ID: 15247427 [TBL] [Abstract][Full Text] [Related]
11. Proteomic analysis of slow- and fast-twitch skeletal muscles. Okumura N; Hashida-Okumura A; Kita K; Matsubae M; Matsubara T; Takao T; Nagai K Proteomics; 2005 Jul; 5(11):2896-906. PubMed ID: 15981298 [TBL] [Abstract][Full Text] [Related]
12. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers. De Luca A; Liantonio A; Pierno S; Desaphy JF; Leoty C; Conte Camerino D J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372 [TBL] [Abstract][Full Text] [Related]
13. Specific impulse patterns regulate acetylcholinesterase activity in skeletal muscles of rats and rabbits. Sketelj J; Leisner E; Gohlsch B; Skorjanc D; Pette D J Neurosci Res; 1997 Jan; 47(1):49-57. PubMed ID: 8981237 [TBL] [Abstract][Full Text] [Related]
14. Distinct patterns of MMP-9 and MMP-2 activity in slow and fast twitch skeletal muscle regeneration in vivo. Zimowska M; Brzoska E; Swierczynska M; Streminska W; Moraczewski J Int J Dev Biol; 2008; 52(2-3):307-14. PubMed ID: 18311722 [TBL] [Abstract][Full Text] [Related]
15. Nerve influence on myosin light chain phosphorylation in slow and fast skeletal muscles. Bozzo C; Spolaore B; Toniolo L; Stevens L; Bastide B; Cieniewski-Bernard C; Fontana A; Mounier Y; Reggiani C FEBS J; 2005 Nov; 272(22):5771-85. PubMed ID: 16279942 [TBL] [Abstract][Full Text] [Related]
16. Muscle fibre number is a possible determinant of muscle fibre composition in rats. Suwa M; Nakamura T; Katsuta S Acta Physiol Scand; 1999 Nov; 167(3):267-72. PubMed ID: 10606829 [TBL] [Abstract][Full Text] [Related]
17. Cortisone-induced changes in myosin heavy chain distribution in respiratory and hindlimb muscles. Polla B; Bottinelli R; Sandoli D; Sardi C; Reggiani C Acta Physiol Scand; 1994 Jul; 151(3):353-61. PubMed ID: 7976407 [TBL] [Abstract][Full Text] [Related]
18. Region- and age-dependent variations of muscle fibre properties. Punkt K; Mehlhorn H; Hilbig H Acta Histochem; 1998 Feb; 100(1):37-58. PubMed ID: 9542580 [TBL] [Abstract][Full Text] [Related]
19. Adaptation of muscle fibre types and capillary network to acute denervation and shortlasting reinnervation. Cebasek V; Kubínová L; Janácek J; Ribaric S; Erzen I Cell Tissue Res; 2007 Nov; 330(2):279-89. PubMed ID: 17805577 [TBL] [Abstract][Full Text] [Related]
20. Electrical muscle activity pattern and transcriptional and posttranscriptional mechanisms regulate PKA subunit expression in rat skeletal muscle. Hoover F; Kalhovde JM; Dahle MK; Skålhegg B; Taskén K; Lømo T Mol Cell Neurosci; 2002 Feb; 19(2):125-37. PubMed ID: 11860267 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]