These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 17965179)

  • 1. A guide to choosing vectors for transformation of the plastid genome of higher plants.
    Lutz KA; Azhagiri AK; Tungsuchat-Huang T; Maliga P
    Plant Physiol; 2007 Dec; 145(4):1201-10. PubMed ID: 17965179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Next generation synthetic vectors for transformation of the plastid genome of higher plants.
    Sinagawa-García SR; Tungsuchat-Huang T; Paredes-López O; Maliga P
    Plant Mol Biol; 2009 Jul; 70(5):487-98. PubMed ID: 19387846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of the Plastid Genome in Tobacco: The Model System for Chloroplast Genome Engineering.
    Maliga P; Tungsuchat-Huang T; Lutz KA
    Methods Mol Biol; 2021; 2317():135-153. PubMed ID: 34028766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacteriophage 5' untranslated regions for control of plastid transgene expression.
    Yang H; Gray BN; Ahner BA; Hanson MR
    Planta; 2013 Feb; 237(2):517-27. PubMed ID: 23053542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel approach to plastid transformation utilizes the phiC31 phage integrase.
    Lutz KA; Corneille S; Azhagiri AK; Svab Z; Maliga P
    Plant J; 2004 Mar; 37(6):906-13. PubMed ID: 14996222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics.
    Maliga P; Svab Z
    Methods Mol Biol; 2011; 701():37-50. PubMed ID: 21181523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastid marker gene excision by the phiC31 phage site-specific recombinase.
    Kittiwongwattana C; Lutz K; Clark M; Maliga P
    Plant Mol Biol; 2007 May; 64(1-2):137-43. PubMed ID: 17294253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A bifunctional aminoglycoside acetyltransferase/phosphotransferase conferring tobramycin resistance provides an efficient selectable marker for plastid transformation.
    Tabatabaei I; Ruf S; Bock R
    Plant Mol Biol; 2017 Feb; 93(3):269-281. PubMed ID: 27858324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stable plastid transformation in lettuce (Lactuca sativa L.).
    Lelivelt CLC; McCabe MS; Newell CA; deSnoo CB; van Dun KMP; Birch-Machin I; Gray JC; Mills KHG; Nugent JM
    Plant Mol Biol; 2005 Aug; 58(6):763-774. PubMed ID: 16240172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plastid marker gene excision in greenhouse-grown tobacco by agrobacterium-delivered Cre recombinase.
    Tungsuchat-Huang T; Maliga P
    Methods Mol Biol; 2014; 1132():205-20. PubMed ID: 24599855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of fertile transplastomic soybean.
    Dufourmantel N; Pelissier B; Garçon F; Peltier G; Ferullo JM; Tissot G
    Plant Mol Biol; 2004 Jul; 55(4):479-89. PubMed ID: 15604694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marker rescue from the Nicotiana tabacum plastid genome using a plastid/Escherichia coli shuttle vector.
    Staub JM; Maliga P
    Mol Gen Genet; 1995 Nov; 249(1):37-42. PubMed ID: 8552031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short communication. Characterization of chloroplast region rrn16-rrn23S from the tropical timber tree Cedrela odorata L. and de novo construction of a transplastomic expression vector suitable for Meliaceae trees and other economically important crops.
    López-Ochoa LA; Apolinar-Hernández MM; Peña-Ramírez YJ
    Genet Mol Res; 2015 Feb; 14(1):1469-78. PubMed ID: 25730086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation.
    Staub JM; Maliga P
    Plant Cell; 1992 Jan; 4(1):39-45. PubMed ID: 1356049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of plastid genome stability in tobacco reveals that the loss of marker genes is more likely by gene conversion than by recombination between 34-bp loxP repeats.
    Tungsuchat-Huang T; Sinagawa-García SR; Paredes-López O; Maliga P
    Plant Physiol; 2010 May; 153(1):252-9. PubMed ID: 20228154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of chloroplast transformation vector and its functional evaluation in
    Narra M; Kota S; Velivela Y; Ellendula R; Allini VR; Abbagani S
    3 Biotech; 2018 Mar; 8(3):140. PubMed ID: 29484279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient targeting of foreign genes into the tobacco plastid genome.
    Zoubenko OV; Allison LA; Svab Z; Maliga P
    Nucleic Acids Res; 1994 Sep; 22(19):3819-24. PubMed ID: 7937099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifying fatty acid profiles through a new cytokinin-based plastid transformation system.
    Dunne A; Maple-Grødem J; Gargano D; Haslam RP; Napier JA; Chua NH; Russell R; Møller SG
    Plant J; 2014 Dec; 80(6):1131-8. PubMed ID: 25280363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marker-Free Transplastomic Plants by Excision of Plastid Marker Genes Using Directly Repeated DNA Sequences.
    Mudd EA; Madesis P; Avila EM; Day A
    Methods Mol Biol; 2021; 2317():95-107. PubMed ID: 34028764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for selection and tracking of plastid-transformed cells in tobacco.
    Jeong SW; Jeong WJ; Woo JW; Choi DW; Park YI; Liu JR
    Plant Cell Rep; 2004 May; 22(10):747-51. PubMed ID: 14735311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.