These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 17965627)

  • 21. Epigenetics of fragile X syndrome and fragile X-related disorders.
    Kraan CM; Godler DE; Amor DJ
    Dev Med Child Neurol; 2019 Feb; 61(2):121-127. PubMed ID: 30084485
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Principal genetic syndromes and autism: from phenotypes, proteins to genes.
    Hou M; Wang MJ; Zhong N
    Beijing Da Xue Xue Bao Yi Xue Ban; 2006 Feb; 38(1):110-5. PubMed ID: 16415981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA Methylation, Mechanisms of
    Nobile V; Pucci C; Chiurazzi P; Neri G; Tabolacci E
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33669384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Autism spectrum disorders and epigenetics.
    Grafodatskaya D; Chung B; Szatmari P; Weksberg R
    J Am Acad Child Adolesc Psychiatry; 2010 Aug; 49(8):794-809. PubMed ID: 20643313
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Epigenetics, copy number variation, and other molecular mechanisms underlying neurodevelopmental disabilities: new insights and diagnostic approaches.
    Gropman AL; Batshaw ML
    J Dev Behav Pediatr; 2010 Sep; 31(7):582-91. PubMed ID: 20814257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MeCP2-dependent repression of an imprinted miR-184 released by depolarization.
    Nomura T; Kimura M; Horii T; Morita S; Soejima H; Kudo S; Hatada I
    Hum Mol Genet; 2008 Apr; 17(8):1192-9. PubMed ID: 18203756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome.
    Brasa S; Mueller A; Jacquemont S; Hahne F; Rozenberg I; Peters T; He Y; McCormack C; Gasparini F; Chibout SD; Grenet O; Moggs J; Gomez-Mancilla B; Terranova R
    Clin Epigenetics; 2016; 8():15. PubMed ID: 26855684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenetics, fragile X syndrome and transcriptional therapy.
    Tabolacci E; Chiurazzi P
    Am J Med Genet A; 2013 Nov; 161A(11):2797-808. PubMed ID: 24123753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Angelman syndrome-derived neurons display late onset of paternal UBE3A silencing.
    Stanurova J; Neureiter A; Hiber M; de Oliveira Kessler H; Stolp K; Goetzke R; Klein D; Bankfalvi A; Klump H; Steenpass L
    Sci Rep; 2016 Aug; 6():30792. PubMed ID: 27484051
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Another patient with MECP2 mutation without classic Rett syndrome phenotype.
    Milani D; Pantaleoni C; D'Arrigo S; Selicorni A; Riva D
    Pediatr Neurol; 2005 May; 32(5):355-7. PubMed ID: 15866439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The landscape of DNA methylation amid a perfect storm of autism aetiologies.
    Vogel Ciernia A; LaSalle J
    Nat Rev Neurosci; 2016 Jul; 17(7):411-23. PubMed ID: 27150399
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward fulfilling the promise of molecular medicine in fragile X syndrome.
    Krueger DD; Bear MF
    Annu Rev Med; 2011; 62():411-29. PubMed ID: 21090964
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of H3K4 demethylases in complex neurodevelopmental diseases.
    Wynder C; Stalker L; Doughty ML
    Epigenomics; 2010 Jun; 2(3):407-18. PubMed ID: 22121901
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human pluripotent stem cell models of Fragile X syndrome.
    Bhattacharyya A; Zhao X
    Mol Cell Neurosci; 2016 Jun; 73():43-51. PubMed ID: 26640241
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BDNF in fragile X syndrome.
    Castrén ML; Castrén E
    Neuropharmacology; 2014 Jan; 76 Pt C():729-36. PubMed ID: 23727436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [The physiological and pathological significance of epigenetic regulation in neural development].
    Li P; Sun FY
    Sheng Li Ke Xue Jin Zhan; 2010 Oct; 41(5):335-40. PubMed ID: 21416922
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linking epigenetics to human disease and Rett syndrome: the emerging novel and challenging concepts in MeCP2 research.
    Zachariah RM; Rastegar M
    Neural Plast; 2012; 2012():415825. PubMed ID: 22474603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rett syndrome: significant clinical overlap with Angelman syndrome but not with methylation status.
    Ellaway C; Buchholz T; Smith A; Leonard H; Christodoulou J
    J Child Neurol; 1998 Sep; 13(9):448-51. PubMed ID: 9733292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MeCP2 Is an Epigenetic Factor That Links DNA Methylation with Brain Metabolism.
    Vuu YM; Roberts CT; Rastegar M
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of UBE3A and MECP2 in Angelman syndrome (AS) and patients with features of AS.
    Hitchins MP; Rickard S; Dhalla F; Fairbrother UL; de Vries BB; Winter R; Pembrey ME; Malcolm S
    Am J Med Genet A; 2004 Mar; 125A(2):167-72. PubMed ID: 14981718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.