These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 17965718)

  • 1. Complete composition tunability of InGaN nanowires using a combinatorial approach.
    Kuykendall T; Ulrich P; Aloni S; Yang P
    Nat Mater; 2007 Dec; 6(12):951-6. PubMed ID: 17965718
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range.
    He C; Wu Q; Wang X; Zhang Y; Yang L; Liu N; Zhao Y; Lu Y; Hu Z
    ACS Nano; 2011 Feb; 5(2):1291-6. PubMed ID: 21284401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers.
    Qian F; Li Y; Gradecak S; Park HG; Dong Y; Ding Y; Wang ZL; Lieber CM
    Nat Mater; 2008 Sep; 7(9):701-6. PubMed ID: 18711385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evolution of nanocrystalline silicon thin films synthesized in high-density, low-temperature reactive plasmas.
    Cheng Q; Xu S; Ostrikov KK
    Nanotechnology; 2009 May; 20(21):215606. PubMed ID: 19423937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel chemical-vapor deposition technique for the synthesis of high-quality single-crystal nanowires and nanotubes.
    He M; Mohammad SN
    J Chem Phys; 2006 Feb; 124(6):64714. PubMed ID: 16483236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-liquid-solid growth of ternary Cu-In-Se semiconductor nanowires from multiple- and single-source precursors.
    Wooten AJ; Werder DJ; Williams DJ; Casson JL; Hollingsworth JA
    J Am Chem Soc; 2009 Nov; 131(44):16177-88. PubMed ID: 19839616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate.
    Pan A; Liu R; Sun M; Ning CZ
    ACS Nano; 2010 Feb; 4(2):671-80. PubMed ID: 20073535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. InGaN nanopillars grown on silicon substrate using plasma assisted molecular beam epitaxy.
    Vajpeyi AP; Ajagunna AO; Tsagaraki K; Androulidaki M; Georgakilas A
    Nanotechnology; 2009 Aug; 20(32):325605. PubMed ID: 19620761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropy of chemical transformation from In2Se3 to CuInSe2 nanowires through solid state reaction.
    Schoen DT; Peng H; Cui Y
    J Am Chem Soc; 2009 Jun; 131(23):7973-5. PubMed ID: 19507900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle-assisted Ga(x)In(1-x)P nanowire growth for designed bandgap structures.
    Jacobsson D; Persson JM; Kriegner D; Etzelstorfer T; Wallentin J; Wagner JB; Stangl J; Samuelson L; Deppert K; Borgström MT
    Nanotechnology; 2012 Jun; 23(24):245601. PubMed ID: 22641029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires.
    Ameruddin AS; Caroff P; Tan HH; Jagadish C; Dubrovskii VG
    Nanoscale; 2015 Oct; 7(39):16266-72. PubMed ID: 26376711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature synthesis of single crystalline Ag2S nanowires on silver substrates.
    Wen X; Wang S; Xie Y; Li XY; Yang S
    J Phys Chem B; 2005 May; 109(20):10100-6. PubMed ID: 16852224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-controlled growth of nanowires within thin-film cracks.
    Adelung R; Aktas OC; Franc J; Biswas A; Kunz R; Elbahri M; Kanzow J; Schürmann U; Faupel F
    Nat Mater; 2004 Jun; 3(6):375-9. PubMed ID: 15133505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution phase synthesis of indium gallium phosphide alloy nanowires.
    Kornienko N; Whitmore DD; Yu Y; Leone SR; Yang P
    ACS Nano; 2015 Apr; 9(4):3951-60. PubMed ID: 25839336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of axial SiGe heterostructures in nanowires using pulsed laser deposition.
    Eisenhawer B; Sivakov V; Berger A; Christiansen S
    Nanotechnology; 2011 Jul; 22(30):305604. PubMed ID: 21705828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology and composition controlled Ga(x)In(1-x)Sb nanowires: understanding ternary antimonide growth.
    Ghalamestani SG; Ek M; Ghasemi M; Caroff P; Johansson J; Dick KA
    Nanoscale; 2014 Jan; 6(2):1086-92. PubMed ID: 24296789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Mg doping on GaN nanowires.
    Zhang D; Xue C; Zhuang H; Sun H; Cao Y; Huang Y; Wang Z; Wang Y
    Chemphyschem; 2009 Feb; 10(3):571-5. PubMed ID: 19142926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial bandgap engineering along single alloy nanowires.
    Gu F; Yang Z; Yu H; Xu J; Wang P; Tong L; Pan A
    J Am Chem Soc; 2011 Feb; 133(7):2037-9. PubMed ID: 21271702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Germanium nanowire growth below the eutectic temperature.
    Kodambaka S; Tersoff J; Reuter MC; Ross FM
    Science; 2007 May; 316(5825):729-32. PubMed ID: 17478716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct nucleation, morphology and compositional tuning of InAs
    Namazi L; Ghalamestani SG; Lehmann S; Zamani RR; Dick KA
    Nanotechnology; 2017 Apr; 28(16):165601. PubMed ID: 28346221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.