BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 17965875)

  • 1. A neural network model for generating complex birdsong syntax.
    Katahira K; Okanoya K; Okada M
    Biol Cybern; 2007 Dec; 97(5-6):441-8. PubMed ID: 17965875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping neural architectures onto acoustic features of birdsong.
    Abarbanel HD; Gibb L; Mindlin GB; Talathi S
    J Neurophysiol; 2004 Jul; 92(1):96-110. PubMed ID: 15028750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sleep-related neural activity in a premotor and a basal-ganglia pathway of the songbird.
    Hahnloser RH; Kozhevnikov AA; Fee MS
    J Neurophysiol; 2006 Aug; 96(2):794-812. PubMed ID: 16495362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanisms of vocal sequence generation in the songbird.
    Fee MS; Kozhevnikov AA; Hahnloser RH
    Ann N Y Acad Sci; 2004 Jun; 1016():153-70. PubMed ID: 15313774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Bengalese finch: a window on the behavioral neurobiology of birdsong syntax.
    Okanoya K
    Ann N Y Acad Sci; 2004 Jun; 1016():724-35. PubMed ID: 15313802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultra-sparse code underlies the generation of neural sequences in a songbird.
    Hahnloser RH; Kozhevnikov AA; Fee MS
    Nature; 2002 Sep; 419(6902):65-70. PubMed ID: 12214232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong.
    Fiete IR; Hahnloser RH; Fee MS; Seung HS
    J Neurophysiol; 2004 Oct; 92(4):2274-82. PubMed ID: 15071087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developmental learning of complex syntactical song in the Bengalese finch: a neural network model.
    Yamashita Y; Takahasi M; Okumura T; Ikebuchi M; Yamada H; Suzuki M; Okanoya K; Tani J
    Neural Netw; 2008 Nov; 21(9):1224-31. PubMed ID: 18460417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances.
    Fiete IR; Fee MS; Seung HS
    J Neurophysiol; 2007 Oct; 98(4):2038-57. PubMed ID: 17652414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike timing and synaptic plasticity in the premotor pathway of birdsong.
    Abarbanel HD; Gibb L; Mindlin GB; Rabinovich MI; Talathi S
    Biol Cybern; 2004 Sep; 91(3):159-67. PubMed ID: 15378372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating variable birdsong syllable sequences with branching chain networks in avian premotor nucleus HVC.
    Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051902. PubMed ID: 20365001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular, circuit, and synaptic mechanisms in song learning.
    Doupe AJ; Solis MM; Kimpo R; Boettiger CA
    Ann N Y Acad Sci; 2004 Jun; 1016():495-523. PubMed ID: 15313792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of birdsong syntax by interjection communication.
    Sasahara K; Ikegami T
    Artif Life; 2007; 13(3):259-77. PubMed ID: 17567245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of testosterone on neuronal populations and their connections in a sensorimotor brain nucleus controlling song production in songbirds: a manganese enhanced-magnetic resonance imaging study.
    Van Meir V; Verhoye M; Absil P; Eens M; Balthazart J; Van der Linden A
    Neuroimage; 2004 Mar; 21(3):914-23. PubMed ID: 15006658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain space for a learned task: strong intraspecific evidence for neural correlates of singing behavior in songbirds.
    Garamszegi LZ; Eens M
    Brain Res Brain Res Rev; 2004 Mar; 44(2-3):187-93. PubMed ID: 15003393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural song control system of hummingbirds: comparison to swifts, vocal learning (Songbirds) and nonlearning (Suboscines) passerines, and vocal learning (Budgerigars) and nonlearning (Dove, owl, gull, quail, chicken) nonpasserines.
    Gahr M
    J Comp Neurol; 2000 Oct; 426(2):182-96. PubMed ID: 10982462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression analysis of cadherins in the songbird brain: relationship to vocal system development.
    Matsunaga E; Okanoya K
    J Comp Neurol; 2008 May; 508(2):329-42. PubMed ID: 18322922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singing-related activity of identified HVC neurons in the zebra finch.
    Kozhevnikov AA; Fee MS
    J Neurophysiol; 2007 Jun; 97(6):4271-83. PubMed ID: 17182906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collapsin response mediator protein-4 (CRMP-4) expression in posthaching development of song control nuclei in Bengalese finches.
    Zhu N; Sun Y; Zeng S; Zhang X; Zuo M
    Brain Res Bull; 2008 Aug; 76(6):551-8. PubMed ID: 18598844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of the GABA(A) receptor gamma4-subunit gene in discrete nuclei within the zebra finch song system.
    Thode C; Güttinger HR; Darlison MG
    Neuroscience; 2008 Nov; 157(1):143-52. PubMed ID: 18824085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.